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Maximum Likelihood Estimation
A Really Simple Example

= Model: |y, i.i.d. N(u=7?,c%=1)
= There Is one unknown parameter: = ?
= Observed Sample: y, (yes, just one observation!)

= QObjective: Use this sample to obtain an estimate of

= [ et’s use thelMaximum Likelihood Estimator




Maximum Likelihood Estimation
Wikipedia
(March 23, 2021)
v’ In statistics, maximum likelihood estimation (MLE) is a
method of estimating the parameters of a probability
distribution by maximizing a likelihood function, so

that under the assumed | statistical model the
observed data|is most probable,

v The point in the parameter space that maximizes the
likelihood function is called the maximum likelihood
estimate.
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Maximum Likelihood Estimation

A Really Simple Example

= Model: |y, ~N (¢, 0°=1)
= Letf(y,; «)denote the probability density function
(pdf) of y,, which depends on the unknown value of

Fly,; u=2)

Fly, s u=4)

f(y,; 4=6)

u="7

Y1
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Maximum Likelihood

Estimation

A Really Simple Example

= | Maximum Likelihood Estimation

. Find 1 so that the

observed data is most probable

= Suppose|y,; = 3.9 Is the observed data !

u=2 u=4

Yy, =13.5

A T

H=0

1
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Maximum Likelihood Estimation
A Really Simple Example

= ' Maximum Likelihood Estimation; Find  so that the
observed data is most probable
= Suppose|y, = 3.5| Is the observed data !

u=2 u=4 Hu=0
24— 1(y;=8.5 p=4)
f(y,=35; u=2) [
\ f(y,=3.5, u=06)
—/ ——="""‘+ \‘"=— : e —— yl




Maximum Likelihood Estimation
A Really Simple Example

* The value of 1 that makes the observed data most
probable is|u = 3.5

3.5

f(y;=3.5; u=3.5)

S Il

Y1

|
y1=[35
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Maximum Likelihood Estimation
A Really Simple Example

" |Maximum Likelihood Estimate of xis 3.5

f (y;=3.5; £ =3.5)

y; =|3.5

Y1
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Maximum Likelihood Estimation

A Really Simple Example

Mathematical Derivations
= Model: y;, ~N (i, 0°=1)
= The probability density function (pdf) of y, Is
fy, s u) = @2m)™" exp [-(1/2) [(y, — #)*]]
= |f we consider f (y, ; «) as a function of x only, given
the observed value of y,, then the corresponding
function f («) i1s known as the Likelihood Function
= The Maximum Likelihood Estimator of « Is found by

Maximizing f (u)




Maximum Likelihood Estimation

A Really Simple Example

Mathematical Derivations
= Example: y, = 3.5 Is the observed data
= The likelthood function (a function of «) Is
f(u)=1(y,=3.5 p)=(2n)"* exp [-(1/2) [(3.5 — )*]]

0.4]

| _ -1/2 = 2
0.3 f () =1(2n) exp( > (3.5 - ) )

0.2|

0.1

3 35 4 5 6 .

Max f () =| MLE of 115 3.5




Maximum Likelihood Estimation

A Second Example

= Observed Sample: |y, ,Y,, ..., Y7

= Model:| y,= u+ g with & white noise N( 0, ¢?)

& |y LA N (g, 0%), t=1, ...

= QObjective: Estimate the unknown parameters

by using the Maximum Likelthood Estimation methoc

, T

u

and

62
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Maximum Likelihood Estimation

A Second Example
= Observed Sample: [y,,VY,, ..., Y7

= Model: y, i.i.d. N (, 62)

= Denote the probability density function (pdf) of the
sample (y,,VY,, ..., Y7) given the parameters x, c? as

f(yl’y29“°9yT;:u’62)

> If we consider this f (---) as a function of x, 62, given the
observed sample values, it is called the Likelihood Function

= Maximum Likelihood Estimates of 1 and 2
Maximize f(y,,Y,,...,Yr; 4, 6?)




Maximum Likelihood Estimation

A Second Example

= Ify,,V,, ..., Y are independent random variables,
their joint pdf is the product of their marginal pdfs

FQY1, Yo, n¥r) =T(ye) xT(yp) x - - xT(yr)
= |nourmodel,y,,Yy,, ..., Yy are independent and so

FQOYr, Yoo ooos Y, 0%) =Ty 1F (Vs 1, 09)

where f (y, ; 1, o?) is the pdf of each observation y,
— Maximum Likelihood Estimates of 1 and 2




Maximum Likelihood Estimation
A Second Example

* |n many cases, as In this one, using the logs of the
pdf/likelihood function, simplifies many calculations:

log f(y1, Yz, .. s Y14, 0%) =2y rlogf(y,; i, 0%

= Note: the logarithm Is a monotonic transformation.
Therefore, the values of 1 and o?that Max f (---) are

the same that Max log f (---)
— Maximum Likelihood Estimates of x and o2
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Maximum Likelihood Estimation

A Second Example
= In this model y, ~ N(x, o2), so that the pdf of y, is

f(yi; u, 0% =(@2no?)t exp [- (1/2) [(y,—p ) Io?]]

»= Taking the logarithm of the pdf, we get

log f (v, ; 1, °)
= —(1/2) log(2r 62) —(1/2) [(y,— 1 )?/c?]
= —(1/2) log(2m) —(1/2) log( c2) —(1/2) [(y,— u )? /7]




Maximum Likelihood Estimation

A Second Example
Observed Sample: y;,V¥5, ..., Yt

Model: y, i.i.d. N (, 62)

log f (y; ; 4, 0°) =
= —(1/2) log( 2 ) —(1/2) log( 5?) —(1/2) [ (y;— 1 )*/c 7]
Maximum Likelihood estimator of « and c?

After a few derivations, we obtain the ML estimates:

-~ 1 IR 1 ~
U = ;Zt=1,...,T y¢| and 6% = ;Zt=1,...,T(3’t _ﬂ)z
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Maximum Likelihood Estimation

The AR(1) Model
Model: y,=c+ p vy, + &, & white noise N(0, c?)

Three parameters to estimate: ¢, p, 62
In this model y, ,y,, ..., y; are not independent

= Ty, Y2, ¥r) # T(y) xT(yp) x- - xT(yr)
However, using the conditional pdfs, we have that

F QY. Yo,.onyr) =1 (y) xT(y,
x T (Y,
x T (Y,

X e

Y1)
Yo, Y1)
Y31 Y2, Y1)

Pl Yras - Y3. Y2, Y1)

17



Maximum Likelihood Estimation
The AR(1) Model

= The conditional maximum likelihood estimator
considers the joint pdf of (y,, ..., yy) conditional on
the initial value y,

FCYo,.oonyr) =1 100 | 1ig)

where f (y,]| l.1) Is the conditional pdf of y, given the
past values |, ; = {Viq1,---+ Yo, Y1}
= Using logarithms:

l0g T (Y, ... Y1) = 2=y 7109 T (Y | 111)




Maximum Likelihood Estimation
The AR(1) Model

= Model: y,=c+p Yy, + &/, & white noise N(0, c?)

= logf(y|l15C,p,0%)=
= —(1/2) log(2r)
— (1/2) log(c®) — (1/2) [ [y; — (¢ + p ¥r.1)]?/o”]

= Conditional Maximum Likelihood Estimator of ¢, p, 62

= After a few derivations, it can be shown that the estimates
of ¢c and p can be obtained by OLS, and the estimate of o7
IS the sum of squared residuals divided by T-1




Maximum Likelihood Estimation
The AR(1) Model
= Note: To calculate the full (unconditional) maximum

likelihood estimator, It Is necessary to use the
unconditional pdf of y, fort =1

.
' y,—c/ (1 -
T o F — — e:»:p{—(y’ - ‘l))} t=1
U«/Q‘ﬂ'(l—pz) 2(00/(1=p"))
2
1 (yf—C—pyf_ﬂ
f l..:C, p,6%)= exps — t>1
(ytl t-1 p ) 0_,\/2—?1_ p{ 2(02) }
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Maximum Likelihood Estimation

The GARCH(1,1) Model
Model: y,=c+u, ,u.= (h)Y? & , & white noise N(0,1)

or | yi|la ~N(c, h)
with = 0yt oy Ut-12 + 0 ht-l
Four parameters to estimate: ¢, a, , 04 ,

log T (¢ | leaiChoph0n, Br) =
= - (1/2) log(2n) — (1/2) log(hy) — (1/2) [ (y,—c)?/ h;]

Maximum Likelihood Estimator:




