

## MACROECONOMETRICS Master in Economics

#### **Maximum Likelihood Estimation**

• Model: 
$$y_t$$
 i.i.d. N ( $\mu = ?, \sigma^2 = 1$ )

- There is one unknown parameter:  $\mu = ?$
- Observed Sample:  $y_1$  (yes, just one observation!)
- Objective: Use this sample to obtain an estimate of  $\mu$
- Let's use the Maximum Likelihood Estimator



### **Maximum Likelihood Estimation**

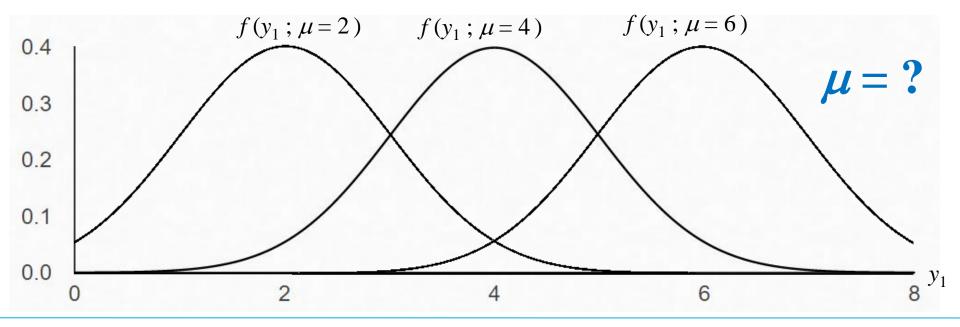
# Wikipedia

(March 23, 2021)

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of a probability distribution by maximizing a likelihood function, so that under the assumed statistical model the observed data is most probable.

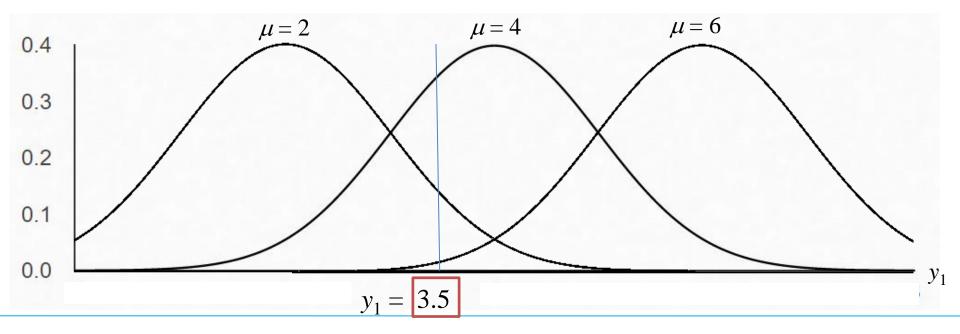
✓ The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate.

- Model:  $y_1 \sim N(\mu, \sigma^2 = 1)$
- Let  $f(y_1; \mu)$  denote the probability density function (pdf) of  $y_1$ , which depends on the unknown value of  $\mu$



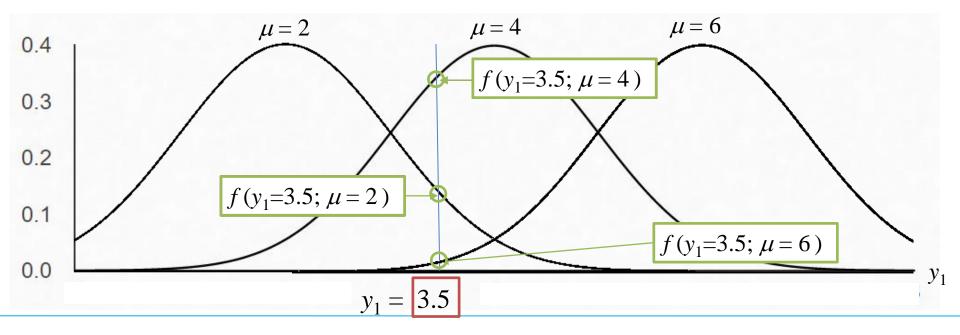
Maximum Likelihood Estimation: Find μ so that the observed data is most probable

• Suppose  $y_1 = 3.5$  is the observed data !

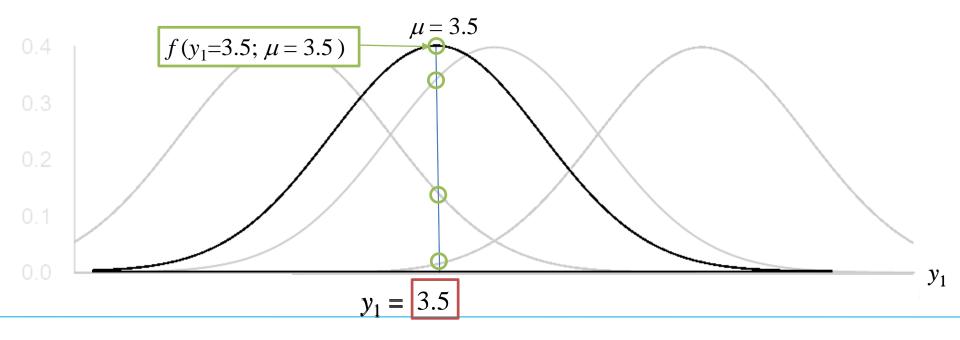


Maximum Likelihood Estimation: Find μ so that the observed data is most probable

• Suppose  $y_1 = 3.5$  is the observed data !

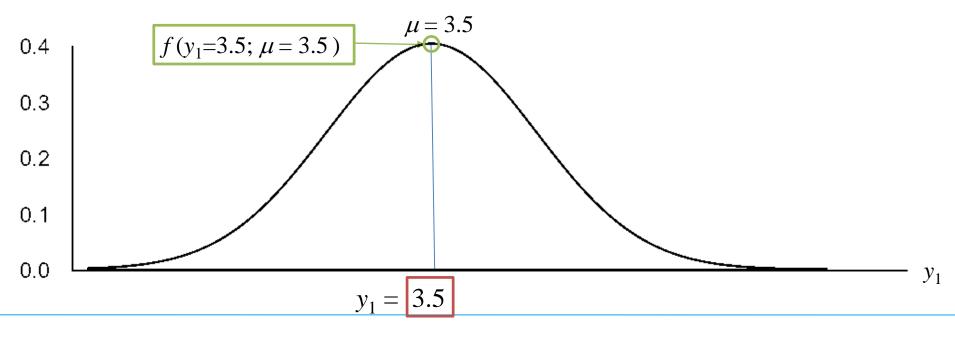


• The value of  $\mu$  that makes the observed data most probable is  $\mu = 3.5$ 





• Maximum Likelihood Estimate of  $\mu$  is 3.5



# Maximum Likelihood Estimation A Really Simple Example Mathematical Derivations

- Model:  $y_1 \sim N(\mu, \sigma^2 = 1)$
- The probability density function (pdf) of  $y_1$  is  $f(y_1; \mu) = (2\pi)^{-1/2} \exp\left[-(1/2)\left[(y_1 - \mu)^2\right]\right]$
- If we consider  $f(y_1; \mu)$  as a function of  $\mu$  only, given the observed value of  $y_1$ , then the corresponding function  $f(\mu)$  is known as the Likelihood Function
- The Maximum Likelihood Estimator of  $\mu$  is found by

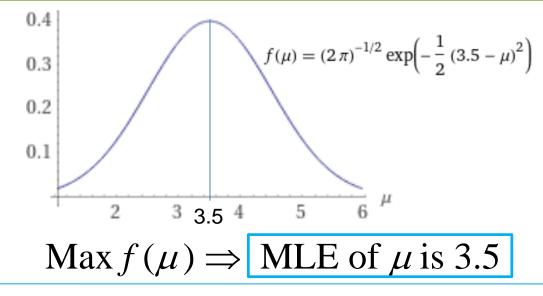
Maximizing  $f(\mu)$ 



#### Maximum Likelihood Estimation A Really Simple Example Mathematical Derivations

- Example:  $y_1 = 3.5$  is the observed data
- The likelihood function (a function of  $\mu$ ) is

 $f(\mu) = f(y_1 = 3.5; \mu) = (2\pi)^{-1/2} \exp[-(1/2)[(3.5 - \mu)^2]]$ 





• Observed Sample: 
$$y_1, y_2, \dots, y_T$$

• Model: 
$$y_t = \mu + \varepsilon_t$$
 with  $\varepsilon_t$  white noise N(0,  $\sigma^2$ )  
 $\Leftrightarrow \quad y_t$  i.i.d. N( $\mu, \sigma^2$ ),  $t = 1, ..., T$ 

• Objective: Estimate the unknown parameters  $\mu$  and  $\sigma^2$  by using the Maximum Likelihood Estimation method

# **Maximum Likelihood Estimation**

#### **A Second Example**

- Observed Sample:  $y_1, y_2, \dots, y_T$
- Model:  $y_t$  i.i.d. N ( $\mu$ ,  $\sigma^2$ )
- Denote the probability density function (pdf) of the sample  $(y_1, y_2, ..., y_T)$  given the parameters  $\mu$ ,  $\sigma^2$  as  $f(y_1, y_2, ..., y_T; \mu, \sigma^2)$ 
  - ► If we consider this  $f(\dots)$  as a function of  $\mu$ ,  $\sigma^2$ , given the observed sample values, it is called the Likelihood Function
- Maximum Likelihood Estimates of  $\mu$  and  $\sigma^2$ Maximize  $f(y_1, y_2, \dots, y_T; \mu, \sigma^2)$



• If  $y_1, y_2, \ldots, y_T$  are independent random variables, their joint pdf is the product of their marginal pdfs

$$f(y_1, y_2, \dots, y_T) = f(y_1) \times f(y_2) \times \dots \times f(y_T)$$

- In our model,  $y_1$ ,  $y_2$ , ...,  $y_T$  are independent and so  $f(y_1, y_2, ..., y_T; \mu, \sigma^2) = \prod_{t=1,...,T} f(y_t; \mu, \sigma^2)$ where  $f(y_t; \mu, \sigma^2)$  is the pdf of each observation  $y_t$ 
  - $\Rightarrow$  Maximum Likelihood Estimates of  $\mu$  and  $\sigma^2$

Max  $\Pi_{t=1,\dots,T} f(y_t; \mu, \sigma^2)$ 



 In many cases, as in this one, using the logs of the pdf/likelihood function, simplifies many calculations:

 $\log f(y_1, y_2, \dots, y_T; \mu, \sigma^2) = \sum_{t=1,\dots,T} \log f(y_t; \mu, \sigma^2)$ 

- Note: the logarithm is a monotonic transformation.
   Therefore, the values of μ and σ<sup>2</sup> that Max f(···) are the same that Max log f(···)
  - $\Rightarrow$  Maximum Likelihood Estimates of  $\mu$  and  $\sigma^2$

Max 
$$\Sigma_{t=1,...,T} \log f(y_t; \mu, \sigma^2)$$



• In this model  $y_t \sim N(\mu, \sigma^2)$ , so that the pdf of  $y_t$  is

$$f(y_t; \mu, \sigma^2) = (2\pi \sigma^2)^{-1/2} \exp[-(1/2)[(y_t - \mu)^2/\sigma^2]]$$

• Taking the logarithm of the pdf, we get

$$\log f(\mathbf{y}_t; \boldsymbol{\mu}, \sigma^2)$$

$$= -(1/2) \log(2\pi \sigma^2) - (1/2) \left[ (y_t - \mu)^2 / \sigma^2 \right]$$

$$= -(1/2) \log(2\pi) - (1/2) \log(\sigma^2) - (1/2) \left[ (y_t - \mu)^2 / \sigma^2 \right]$$



- Observed Sample:  $y_1, y_2, \dots, y_T$
- Model:  $y_t$  i.i.d. N ( $\mu$ ,  $\sigma^2$ )
- $\log f(y_t; \mu, \sigma^2) =$ 
  - = -(1/2) log(  $2\pi$  ) -(1/2) log(  $\sigma^2$  ) -(1/2) [ ( $y_t \mu$ )<sup>2</sup>/ $\sigma^2$ ]
- Maximum Likelihood estimator of  $\mu$  and  $\sigma^2$ Max  $\Sigma_{t=1,...,T} \log f(y_t; \mu, \sigma^2)$
- After a few derivations, we obtain the ML estimates:

$$\hat{\mu} = \frac{1}{T} \sum_{t=1,...,T} y_t$$
 and  $\hat{\sigma}^2 = \frac{1}{T} \sum_{t=1,...,T} (y_t - \hat{\mu})^2$ 

- Model:  $y_t = c + \rho y_{t-1} + \varepsilon_t$ ,  $\varepsilon_t$  white noise N(0,  $\sigma^2$ )
- Three parameters to estimate: c ,  $\rho$  ,  $\sigma^2$
- In this model  $y_1, y_2, \dots, y_T$  are not independent  $\Rightarrow f(y_1, y_2, \dots, y_T) \neq f(y_1) \times f(y_2) \times \dots \times f(y_T)$
- However, using the conditional pdfs, we have that  $f(y_1, y_2, ..., y_T) = f(y_1) \times f(y_2/y_1)$  $\times f(y_3/y_2, y_1)$

×
$$f(y_4 / y_3, y_2, y_1)$$
  
×···

$$\times f(y_T / y_{T-1}, \dots, y_3, y_2, y_1)$$

• The <u>conditional</u> maximum likelihood estimator considers the joint pdf of  $(y_2, \ldots, y_T)$  conditional on the initial value  $y_1$ 

$$f(y_2, ..., y_T) = \prod_{t=2,...,T} f(y_t / I_{t-1})$$

where  $f(y_t / I_{t-1})$  is the conditional pdf of  $y_t$  given the past values  $I_{t-1} = \{y_{t-1}, \dots, y_2, y_1\}$ 

• Using logarithms:

$$\log f(y_2, ..., y_T) = \sum_{t=2,...,T} \log f(y_t / I_{t-1})$$

• Model:  $y_t = c + \rho y_{t-1} + \varepsilon_t$ ,  $\varepsilon_t$  white noise N(0,  $\sigma^2$ )

$$\log f(y_t / I_{t-1}; c, \rho, \sigma^2) = = -(1/2) \log(2\pi) -(1/2) \log(\sigma^2) - (1/2) [[y_t - (c + \rho y_{t-1})]^2 / \sigma^2]$$

• Conditional Maximum Likelihood Estimator of  $c, \rho, \sigma^2$ 

$$\operatorname{Max} \Sigma_{t=2,\ldots,T} \log f(y_t / I_{t-1}; c, \rho, \sigma^2)$$

• After a few derivations, it can be shown that the estimates of *c* and  $\rho$  can be obtained by OLS, and the estimate of  $\sigma^2$  is the sum of squared residuals divided by *T*-1



• Note: To calculate the full (unconditional) maximum likelihood estimator, it is necessary to use the unconditional pdf of  $y_t$  for t = 1

$$\begin{split} f(\mathbf{y}_t; \mathbf{c}, \boldsymbol{\rho}, \boldsymbol{\sigma}^2) &= \frac{1}{\sigma \sqrt{2\pi} (1 - \boldsymbol{\rho}^2)} \exp\left\{-\frac{\left(y_t - c/(1 - \boldsymbol{\rho}^2)\right)^2}{2(\sigma^2/(1 - \boldsymbol{\rho}^2))}\right\} \quad t = 1\\ f(\mathbf{y}_t/I_{t-1}; \mathbf{c}, \boldsymbol{\rho}, \boldsymbol{\sigma}^2) &= \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{\left(y_t - c - \boldsymbol{\rho} y_{t-1}\right)^2}{2(\sigma^2)}\right\} \quad t > 1 \end{split}$$



# **Maximum Likelihood Estimation The GARCH(1,1) Model** Model: $y_t = c + u_t$ , $u_t = (h_t)^{1/2} \varepsilon_t$ , $\varepsilon_t$ white noise N(0,1) or $y_t | I_{t-1} \sim N(c, h_t)$

with 
$$h_t = \alpha_0 + \alpha_1 u_{t-1}^2 + \beta_1 h_{t-1}$$

- Four parameters to estimate: c ,  $\alpha_0$  ,  $\alpha_1$  ,  $\beta_1$
- $\log f(y_t / I_{t-1}; c, \alpha_0, \alpha_1, \beta_1) =$  $= -(1/2) \log(2\pi) - (1/2) \log(h_t) - (1/2) [(y_t - c)^2 / h_t]$
- Maximum Likelihood Estimator:

$$\operatorname{Max} \Sigma_{t=1,\dots,T} \log f(\mathbf{y}_t / I_{t-1}; c, \alpha_0, \alpha_1, \beta_1)$$

(Note: the initial value of  $h_t$  has to be estimated)