

# Exercises Week 1

### 1. Difference Equations (Revision)

1. Consider the AR(1) model (stationary):

$$y_t = \alpha y_{t-1} + \epsilon_t \tag{1}$$

a) Show that  $E(Y_t) = 0$ Solution:

Let L be the lag operator such that  $Ly_t = y_{t-1}$ . Then:

$$(1 - \alpha L)y_t = \epsilon_t \Leftrightarrow$$
$$y_t = \frac{1}{1 - \alpha L} \epsilon_t$$

Because  $\alpha < 1$  since the model is stationary, we can use the geometric sum formula such that:

$$y_t = \sum_{i=0}^{\infty} \alpha^i \epsilon_{t-i}$$

This is the  $MA(\infty)$  representation of the stationary AR(1) process. Now we can take the expected value:

$$E(y_t) = E(\sum_{i=0}^{\infty} \alpha^i \epsilon_{t-i}) = E(\epsilon_t) = 0$$

b) Calculate the variance:

#### Solution:

Let's start from the  $MA(\infty)$  specification and use the rules of the variance

$$Var(y_t) = Var(\sum_{i=0}^{\infty} \alpha^i \epsilon_{t-i}) = \frac{1}{1 - \alpha^2} Var(\epsilon_t) = \frac{\sigma_e^2}{1 - \alpha^2}$$

2. Consider the AR(2) model:

$$y_t = \alpha_0 + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \epsilon_t \tag{2}$$

a) Find the equilibrium solution y\*.
Solution:
By substitution:

$$y^* = \alpha_0 + \alpha_1 y^* + \alpha_2 y^* + \epsilon_t \Leftrightarrow$$
$$y^* = \frac{\alpha_0}{(1 - \alpha_1 - \alpha_2)}$$



b) Show the characteristic polynomial and describe what are the stability conditions.

#### Solution:

Write the model using the Lag Operator:

$$y_t = \alpha_0 + \alpha_1 L y_t + \alpha_2 L^2 y_t + \epsilon_t \Leftrightarrow (1 - \alpha_1 L - \alpha_2 L^2) y_t = \alpha_0 + \epsilon_t$$

Factorize the characteristic polynomial and find the roots:

$$(1 - \alpha_1 L - \alpha_2 L^2) = (1 - \lambda_1 L)(1 - \lambda_2 L) \Leftrightarrow (1 - \alpha_1 L - \alpha_2 L^2)^{(-1)} = (1 - \lambda_1 L)^{(-1)}(1 - \lambda_2 L)^{(-1)}$$

The roots of characteristic polynomial  $\lambda^2 - \alpha_1 \lambda - \alpha_2 = 0$ :

$$\lambda_1, \lambda_2 = \frac{\alpha_1 \pm \sqrt{\alpha_1^2 + 4\alpha_2}}{2}$$

- If  $\lambda_1 \neq \lambda_2$  real: Stability Condition:  $|\lambda_1| < 1$  and  $|\lambda_2| < 1$
- If  $\lambda_1 \neq \lambda_2$  real: Stability Condition:  $|\lambda_1| < 1$  and  $|\lambda_2| < 1$
- If  $\lambda_1 = a + bi$ ,  $\lambda_2 = a bi$  complex: Stability Condition: |r| = r < 1



## 2. Forecasting

1. Consider the European area economic sentiment indicator (**SENTIMENT**) series in Figure 1. To make some policy decision it was necessary to provide



Figure 1: European area economic sentiment indicator

one-step ahead forecasts for the Sentiment Indicator. To help choose the model to be used in the forecasting exercise the period from 2018:02 to 2020:02 was chosen for evaluation purposes. Two models where considered: i) Model A - a simple AR(4) and Model B - a simple trend model (Sentiment<sub>t</sub> =  $a + bt + e_t$ ).

a) Given the following results, which model would you chose. Justify.

|                         | AR(4)   | Trend Model |
|-------------------------|---------|-------------|
| Mean Error              | -9.0148 | -39.513     |
| Mean Squared Error      | 71.134  | 74.492      |
| Root Mean Squared Error | 8.4341  | 8.6309      |
| Mean Absolute Error     | 57.733  | 66.642      |
| Mean Percentage Error   | 131.16  | 212.94      |

#### Solution:

Model - AR(4) as it presents the lowest values for all forecast measures provided

b) In addition given the results in Table below indicate in detail how you would compute the Diebold-Mariano test.
 Solution:

To compute the Diabold-Mariano test we need to do the following:

i) Compute the forecast errors for Model A and Model B,  $\hat{\epsilon}_t^A$  and  $\hat{\epsilon}_t^B$ , respectively, where  $\hat{\epsilon}_t^K = Model K_t - Sentiment_t, K = A, B$ 



| Date   | Sentiment | Model A | Model B |
|--------|-----------|---------|---------|
| 2018:2 | -8.3      | 68.0    | 40.3    |
| 2018:3 | -37.0     | -29.6   | 36.9    |
| 2018:4 | -62.4     | -15.5   | 32.2    |
| 2019:1 | -40.0     | -46.3   | 26.4    |
| 2019:2 | -17.3     | -3.0    | 22.0    |
| 2019:3 | -86.3     | 8.1     | 19.0    |
| 2019:4 | -13.3     | -88.9   | 12.7    |
| 2020:1 | -13.5     | 47.6    | 10.1    |
| 2020:2 | 129.8     | -7.6    | 7.7     |

Table 1: Forecast Results

ii) Compute either

$$\begin{split} \hat{d}_t &= (\hat{\epsilon^A_t})^2 - (\hat{\epsilon^B_t})^2 \quad \text{or} \\ \hat{d}_t &= |\hat{\epsilon^A_t}| - |\hat{\epsilon^B_t}| \end{split}$$

iii) Compute the mean of the  $\hat{d}_t$ :

$$\bar{d} = \frac{1}{n} \sum_{t=1}^{n} \hat{d}_t$$

iv) Compute the DM test

$$DM = \frac{\bar{d}}{\sqrt{Var(\bar{d})}}$$

Note that  $Var(\bar{d})$  needs to be estimated using the **Newey-West HAC** estimator as the forecast generates autocorrelation.