
NOVA School of Business and Economics Universidade NOVA de Lisboa

Time Series - Exercise Sheet

- 1. Rewrite the following model $p_t = 0.7p_{t-1} + 1.2p_{t-2} + 0.8p_{t-3} + 1.6p_{t-4} + u_t$. using the lag operator, *L*.
- 2. Consider the following dynamic models,

$$\begin{aligned} i) \quad & \widehat{y}_t = 0.4y_{t-1} + 0.3y_{t-2} - 0.5y_{t-3} + 1.1y_{t-4} - 0.7y_{t-5} \\ ii) \quad & \widehat{y}_t = 0.2y_{t-3} + \varepsilon_t + 0.3\varepsilon_{t-1} - 0.2\varepsilon_{t-2} \\ iii) \quad & \widehat{y}_t = \varepsilon_t + 0.1\varepsilon_{t-1} + 0.3\varepsilon_{t-2} + 0.55\varepsilon_{t-3} \\ iv) \quad & \widehat{y}_t = 0.16y_{t-4} \end{aligned}$$

- a) Identify each model.
- b) When can the models in ii) and iii) be considered invertible.
- 3. Consider the monthly data from June 1982 to August 1996 of the 5 year Tbond given in Figure 1:

a) Given the following correlograms:

Figure 2	2: Levels
1982M06 1996M08	

Figure 3: First Differences

PAC Q-Stat Prob

0.508 0.539 0.744 0.744 0.871 0.527 0.649 0.364 0.374 0.152

0.210 0.230 0.259

0.284 0.302 0.325 0.368 0.421 0.464 0.527 0.592

cluded observation						Autocorrelation	Partial Correlation	AC	PAC	Q-Sta
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	ihi	1 111	1 0.050	0.050	0.438
		1 0.96	5 0.965	161.97	0.000	เป็น	1 เกิ	2 -0.068		
I	101	2 0.92	3 -0.042	312.69	0.000	- ili	1 1	3 -0.002		1.23
	ի դին կ	3 0.89	5 0.039	453.74	0.000	11	1 11	4 -0.006		
	1 10 1	4 0.86	7 0.057	587.05	0.000	e i i		5 -0.128	-0.128	4.15
	1 1	5 0.84				111	1 1 1	6 0.016	0.030	4.20
	լ դու լ	6 0.82		834.26		1 🗖		7 0.139	0.121	7.65
			1 -0.002			101	101	8 -0.074	-0.089	8.63
	!!!		9 -0.028			ı 🗖		9 0.159	0.193	13.2
	1 11 1		7 -0.001	1164.6		111	1 101	10 -0.004	-0.056	13.2
			4-0.164 30071	1260.9 1350.5		101	1 101	11 -0.066	-0.038	14.0
			3 0.071			i di i	1 10	12 -0.058	-0.017	14.6
	1 111 1	12 0.01	7 -0 077	1101.0	0.000	101	1 10 1	13 -0.061	-0.102	15.3
			5 0.055			id i	1 101	14 -0.066	-0.033	16.1
	l ifi l		3 -0 022			1 🗍 1	1 10	15 0.061	0.078	16.9
			2 -0.004	1720.2		i ji	1 10	16 0.045	-0.049	17.2
1 	ի դիր ի		5 0.101	1781.8		10	1 1	17 -0.034	0.012	17.5
	1 11	18 0.55	4 0.025	1841.1	0.000	101	101	18 -0.044	-0.083	17.8
	I I	19 0.54	0.007	1897.9	0.000	10	()	19 -0.017	-0.018	17.9
· 🗖	1 11	20 0.52	9 0.027	1952.8	0.000	111	1 101	20 -0.001	0.052	17.9

Why are the correlograms of the levels and first differences so different? What can you say about the persistence of the two series and of the eventual time series models you would suggest in both cases?

- b) Given the following models for the first differences $(\Delta TBOND5_t)$, indicate:
- i) What type of model were estimated in each case;
- ii) Which one would you choose to model the first differences of TBOND5? Why?

Model A

Dependent Variable: DTBOND5 Method: Least Squares Date: 11/02/14 Time: 19:24 Sample (adjusted): 1982M08 1996M08 Included observations: 169 after adjustments					
Variable	Coefficient	Std. Error	t-Statistic		
C DTBOND5(-1)	-0.049568 0.050343	0.041355 0.077302	-1.198597 0.651246		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.002533 -0.003440 0.535181 47.83196 -133.1443 0.424121	Mean depen S.D. depend Akaike info o Schwarz cri Hannan-Qui Durbin-Wat	dent var criterion iterion inn criter.		

0.424121 0.515783

F-statistic Prob(F-statistic)

Model B

t-Statistic

Prob.

Dependent Variable: DTBOND5 Method: Least Squares Date: 11/02/14 Time: 19:26 Sample (adjusted): 1983M04 1996M08 Included observations: 161 after adjustments Variable Coefficient Std. Error

_	C DTBOND5(-9)	-0.033492 0.163724	0.039968 0.073853	-0.837969 2.216878	0.4033 0.0281
	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.029982 0.023882 0.504621 40.48820 -117.3274 4.914548 0.028050	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.042298 0.510757 1.482328 1.520606 1.497870 1.827970

Model D Dependent Variable: DTBOND5

Dependent Variable: DTBOND5 Method: Least Squares Date: 11/02/14 Time: 19:27 Sample (adjusted): 1983M04 1996M08 Included observations: 161 after adjustments Convergence achieved after 31 iterations MA Backcast: 1982M07 1983M03 Variable Coefficient Std. Error t-Statistic Prob. -0.075732 -0.656563 0.919890 0.071787 0.062774 0.018583 -1.054959 -10.45923 49.50105 0.2931 0.0000 0.0000 C DTBOND5(-9) MA(9) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) 0.123500 0.112405 0.481196 36.58482 -109.1665 11.13116 0.000030 Mean dependent var S.D. dependent var Akaike info criterion -0.042298 0.510757 1.393373 Schwarz criterion Hannan-Quinn criter Durbin-Watson stat 1.450791 1.416687 1.827414

Model C

Method: Least Square Date: 11/02/14 Time: Sample (adjusted): 19 Included observations: Convergence achieve MA Backcast: 1981M1	: 19:28 82M07 1996M0 : 170 after adju d after 8 iteratio	stments		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(7) MA(8) MA(9)	-0.053064 0.232092 -0.135442 0.217229	0.051524 0.072722 0.072146 0.072650	-1.029891 3.191497 -1.877324 2.990067	0.3046 0.0017 0.0622 0.0032
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.079319 0.062680 0.515730 44.15229 -126.6265 4.767118 0.003252	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.051824 0.532695 1.536782 1.610566 1.566723 1.817344

c) Considering one-step a head forecasts for the next 10 months, the following statistics were obtained for each model:

Prob.

0.2324 0.5158

-0.052130 0.534263 1.599341 1.636381 1.614373 1.991852

Model A

Model 11		
Forecast: DTBOND5F		Fo
Actual: DTBOND5		Ac
Forecast sample: 1995M11	1996M08	Fo
Included observations: 10)	Inc
Root Mean Squared Error	0.395327	Ro
Mean Absolute Error	0.311792	Me
Mean Abs. Percent Error	112.0626	Me
Theil Inequality Coefficient	0.869137	Th
Bias Proportion	0.003809	
Variance Proportion	0.891765	
Covariance Proportion	0.104426	

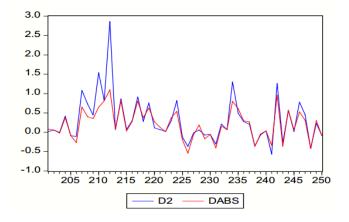
Model C

Forecast: DTBOND5F
Actual: DTBOND5
Forecast sample: 1995M11 1996M08
Included observations: 10
Root Mean Squared Error 0.438385
Mean Absolute Error 0.369255
Mean Abs. Percent Error 344.3515
Theil Inequality Coefficient 0.683007
Bias Proportion 0.010637
Variance Proportion 0.177982
Covariance Proportion 0.811381

Model B

Forecast: DTBOND5F	
Actual: DTBOND5	
Forecast sample: 1995M11	1996M08
Included observations: 10)
Root Mean Squared Error	0.422131
Mean Absolute Error	0.323572
Mean Abs. Percent Error	134.6953
Theil Inequality Coefficient	0.826935
Bias Proportion	0.000174
Variance Proportion	0.571207
Covariance Proportion	0.428619

Model D


Forecast: DTBOND5F	
Actual: DTBOND5	
Forecast sample: 1995M11	1996M08
Included observations: 10)
Root Mean Squared Error	0.456318
Mean Absolute Error	0.369547
Mean Abs. Percent Error	213.9112
Theil Inequality Coefficient	0.794132
Bias Proportion	0.008843
Variance Proportion	0.339499
Covariance Proportion	0.651659

Which model would you choose based on the analysis of the RMSE and the MAE?

- d) Considering models C and D, and assuming that you forecast for the 10 periods (i.e. November 1995 to August 1996) fixing your information in October 1995, what will the forecast for August 1996 from these two models look like.
- e) Note that in the forecast exercise of question c) the sample was split into two parts: One for estimation (1982m6 1995m10) and the rest for forecasting (1995m11 1996m8), why is this important?
- 4. To statistically compare the forecasting accuracy of the AR(9) and the MA(9) models, we may compute Diebold-Mariano (DM) statistics using the squared error and absolute error loss functions. The DM statistics are based on the following loss differentials

$$d_{sq,t} = \left(\widehat{\varepsilon}_{t}^{MA(9)}\right)^{2} - \left(\widehat{\varepsilon}_{t}^{AR(9)}\right)^{2}$$
$$d_{abs,t} = \left|\widehat{\varepsilon}_{t}^{MA(9)}\right| - \left|\widehat{\varepsilon}_{t}^{AR(9)}\right|$$

computed using the 1-step ahead forecast errors from the AR(9) and MA(9) models, respectively. A time plot of these loss differentials are shown below

In general both loss differentials are positive indicating that the MA(9) model produces a larger forecast error than the AR(9) model. The DM statistic

$$DM = \frac{d}{se(\overline{d})}$$

may be computed by regressing the loss differential on a constant and choosing the NW correction to the standard error.

Dependent Variable: D2 Method: Least Squares Date: 05/24/05 Time: 09:53 Sample: 201 250 Included observations: 50				
Newey-West HAC Standard E	rrors & Covariance	(lag truncation=3)		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.312600	0.103399	3.023237	0.0040
or				
Dependent Variable: DABS				
Method: Least Squares				
Date: 05/24/05 Time: 10:10 Sample: 201 250				
Included observations: 50				
Newey-West HAC Standard E	rrors & Covariance	(lag truncation=3)		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
с	0.211032	0.066393	3.178508	0.0026

The DM statistic has an asymptotic standard normal distribution. Using both the squared and absolute value loss functions we reject the null hypothesis that the AR(9) and MA(9) models have equally forecasting accuracy. Since the t-statistics are positive we conclude that the AR(9) model is more accurate than the MA(9) model.