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Difference Equations
Part II – Doing the Math



Difference Equations

Topics

Linear difference equations:

• 1st order

• 2nd order

• pth order
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1st order Difference Equations

1. Finding the solution given an initial condition

2. Equilibrium solution

3. Impulse response function

4. Stability condition

5. Finding a solution without an initial condition

6. Finding a solution using the Lag operator
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1st order Difference Equations
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Finding a solution for {yt }

as a function of the forcing process {t }

We will look at three approaches:

1. Finding a solution given an initial condition

5. Finding a solution without an initial condition

6. Finding a solution using the Lag operator

yt = a0 + a1 yt-1 + t       for all t



1st order Difference Equations
1. Finding the solution given an initial condition
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• We start at time t-1

• Assume yt-1 is known

• Iterate forward from t-1 to t , t+1 , ... , t+n, ...

yt+1 = a0 + a1 yt + t+1

= a0 + a1 (a0 + a1 yt-1 + t) + t+1

= (a0 +a1a0) +a1
2 yt-1 + (a1t +t+1)

yt = a0 + a1 yt-1 + t
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yt+n = a0 (1+a1+a1
2++a1

n )

+a1
n+1 yt-1

+(a1
nt+a1

n-1t+1++a1t+n-1+t+n)

n+1 terms

n+1 terms

...after n+1 iterations (from t to t+n):

1st order Difference Equations
1. Finding the solution given an initial condition



1st order Difference Equations
2. Equilibrium solution
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Is there an equilibrium solution?

Meaning: a value for y, call it y*, such that if :

• yt-1 = y*

• and no future shocks: t=t+1=  =t+n=  = 0

then  yt = yt+1 =  = yt+n =  = y*.

Let’s find it: y* = a0 + a1 y* 

Note:

y* = a0 / (1 - a1 )

yt = a0 + a1 yt-1 + t

a0 = (1 - a1 ) y*



1st order Difference Equations
2. Equilibrium solution
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Note: We can rewrite

yt = a0 + a1 yt-1 + t
as

yt = y* + a1 (yt-1 – y*) + t

As before, find solution by iterating forward from yt-1 :

... and after n+1 iterations (from t to t+n) we get:

yt+n = y* + a1
n+1 (yt-1 - y*)

+(a1
nt+a1

n-1t+1++a1t+n-1+t+n)

a0 = (1 - a1 ) y*



1st order Difference Equations
3. Impulse response function

9Macroeconometrics

What are the impacts of a TRANSITORY shock t

(meaning: t = 1 ,   t+1 = t+2 = ...=0)

on the present and future values of yt ? (multipliers  IRF)

 yt+n /  t =

yt+n = y* + a1
n+1 (yt-1 - y*)

+(a1
nt+a1

n-1t+1++a1t+n-1+t+n)

1     for  n = 0

a1
n for  n = 1, 2, 3, ...



1st order Difference Equations
3. Impulse response function
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Note:

 yt+n /  t =  yt /  t-n

=
1     for  n = 0

a1
n for  n = 1, 2, 3, ...



1st order Difference Equations
4. Stability condition
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How does the IRF look like for different a1 ?

a1 > 1     → explosive

a1 = 1     → permanent impact

0 < a1< 1→ dies out exponentially

a1 = 0     → impact only when shock occurs, not in future

-1<a1<0 → dies out expon. & oscillates +/- every period

a1= -1 →permanent impact & oscillates +/- every period

a1 < -1 → explosive & oscillates +/- every period
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Some simulations.

In all these cases: 

• initial condition 

at time 0 : y0 = 1

•t are random shocks

1st order Difference Equations
4. Stability condition
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Simulation in Gretl: sim_diff_eq_1.inp
# Simulate a 1st order difference equation:
#      y(t) = a0 + a1*y(t-1) + epsilon(t)
# epsilon: random shocks
# y: the solution
# y_zeroshocks: solution without shocks

# Create data set with annual data, 1900-1950
nulldata 51
setobs 1 1900 --time-series 

# Generate Normal random shocks with 
# some standard deviation and zero mean
scalar epsilon_sd=0.1
series epsilon=normal(0,epsilon_sd)
# Set a0 and a1
scalar a0=0
scalar a1=0.9

1st order Difference Equations
4. Stability condition

# Initialize the two series: y , y_zeroshocks
series y = 0
series y_zeroshocks = 0

# Initial condition
smpl 1900 1900
y = 1
y_zeroshocks = 1
# Iterate forward until the end of the sample
smpl 1901 1950
y = a0 + a1*y(-1) + epsilon
y_zeroshocks = a0 + a1*y_zeroshocks(-1)

# Finally, reset to the full sample
smpl 1900 1950

# Graph the simulated series
gnuplot y y_zeroshocks --time-series --with-lines --
output=display



1st order Difference Equations
4. Stability condition
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|a1| < 1



1st order Difference Equations
Back to 3. Impulse response function
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What are the impacts of a PERMANENT shock ? 

This means that t , t+1 , t+2 , ... , all increase by 1 unit.

Impact on yt+n is    a1
n+a1

n-1++a1+1

Impact of a permanent shock is the cumulative IRF !

yt+n = y* + a1
n+1 (yt-1 - y*)

+(a1
nt+a1

n-1t+1++a1t+n-1+t+n)



1st order Difference Equations
Back to 3. Impulse response function
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Suppose stability condition holds: |a1| < 1

Long-run impact on y of a:

• transitory shock in  is equal to zero

• permanent shock in  is given by 1/(1- a1)
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• We start at time t

• Iterate backward:

yt = a0 + a1 (a0 + a1 yt-2 + t-1) + t

= (a0 +a1a0) +a1
2 yt-2 + (a1t-1 +t)

yt = (a0 +a1a0 +a1
2a0 + ) + a1

 yt- 

+(t +a1t-1+a1
2t-2+ )

Note: just to simplify, the notation is a bit sloppy: one should use limits.

yt = a0 + a1 yt-1 + t

1st order Difference Equations
5. Finding a solution without an initial condition
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Assumptions:

• { yt } is bounded, meaning | yt | <  for all t

• Stability condition holds: | a1 | < 1

We have found a solution:

yt = y*  +  (t  +a1t-1+a1
2t-2+ )

where: y* = a0 / (1 - a1 )

1st order Difference Equations
5. Finding a solution without an initial condition
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A Solution:

yt = y*  +  (t  +a1t-1+a1
2t-2+ )

Note: Because there is no initial condition,

there are actually other possible solutions, such as:

yt = c a1
t + y* + (t +a1t-1+a1

2t-2+ )
where c is some constant.

But also note that this solution is unbounded since

ca1
t diverges when t→ -

unless c = 0.

1st order Difference Equations
5. Finding a solution without an initial condition



Macroeconometrics

1st order Difference Equations
6. Finding a solution using the Lag operator

The Lag operator:   L yt= yt-1 &    L c = c

Rewrite: 

yt = a0 + a1 yt-1 + t

as: 

yt = a0 + a1 Lyt +  t



( 1 - a1 L) yt = a0 + t

20



Macroeconometrics

1st order Difference Equations
6. Finding a solution using the Lag operator

Can we solve:

( 1 - a1 L) yt = a0 + t

as:

yt = ( 1 - a1 L) -1 ( a0 + t )   ?

Answer: Yes, if these assumptions are valid:

• { yt } is bounded,

• Stability condition: | a1 | < 1 .

In this case:

( 1 - a1 L) -1  ( 1 + a1 L + a1
2 L2 +  )

21
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1st order Difference Equations
6. Finding a solution using the Lag operator

Doing the derivations we have:

( 1 - a1 L) yt = a0 + t

 yt = ( 1 - a1 L) -1 (a0 + t )
 yt = ( 1 + a1 L + a1

2 L2 +  ) (a0 + t )

 yt = ( 1 + a1 L + a1
2 L2 +  ) a0

+ ( 1 + a1 L + a1
2 L2 +  ) t

 yt = (a0 + a1 a0+ a1
2 a0 +  )

+ (t + a1t-1 + a1
2t-2+ )

 yt = y* + (t + a1t-1+a1
2t-2+ )

22



2nd order Difference Equations

1. Finding the solution given initial conditions

2. Equilibrium solution

3. Using the Lag operator 

4. IRF and stability conditions
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2nd order Difference Equations
1. Finding the solution given initial conditions
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Iterating forward→ Need 2 initial conditions

For instance, if we know values of y-1 and y0 then:

y1 = a0 +a1 y0 +a2 y-1 + 1

y2 = a0 +a1 y1 +a2 y0 + 2

= a0 +a1(a0+a1 y0+a2 y-1+1) +a2 y0 + 2

etc,...

Examples: use Gretl program sim_dif_eq_2.inp

yt = a0 + a1 yt-1 + a2 yt-2 + t



2nd order Difference Equations
2. Equilibrium solution
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Is there an equilibrium solution?

Meaning: a value for y, call it y*, such that if :

• yt-1 = y*

• and no future shocks: t=t+1==t+n=  = 0

then  yt = yt+1 =  = yt+n =  = y*.

Let’s find it: y* = a0 + a1 y* + a2 y* 

y* = a0 / (1 – a1 – a2 )

yt = a0 + a1 yt-1 + a2 yt-2 + t



2nd order Difference Equations
3. Using the Lag operator
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Let’s use the lag operator:

yt = a0 +a1 yt-1 +a2 yt-2 + t

 (1 – a1 L – a2 L2) yt = a0 + t

 yt = (1 –a1 L – a2 L2)-1 (a0 + t)

Is it possible? What does it mean?



2nd order Difference Equations
3. Using the Lag operator
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Suppose we can factorize:

(1–a1L–a2 L2) = (1–1L) (1–2L)

so that

(1–a1L–a2 L2)-1 = (1–1L) -1 (1–2L) -1

Note:This result isvalidonlywhenStability Conditions areok
(we’llcheckthis later)



2nd order Difference Equations
3. Using the Lag operator
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It follows that:

yt = (1 – a1 L – a2 L2)-1 a0

+ (1 – a1 L – a2 L2)-1 t

 yt = a0 /(1 – a1 – a2)

+ (1–2L) -1 (1–1L) -1t

 yt = y*

+ (1–2L)-1(t +1t-1+1
2t-2+ )



2nd order Difference Equations
3. Using the Lag operator
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yt = y*

+(1–2L)-1(t +1t-1+1
2t-2+)

 yt = y*

+(t +2t-1 +2
2t-2 +)

+(1t-1 +21t-2 +2
21t-3 +)

+(1
2t-2+2 1

2t-3+2
21

2t-4 +)

+ 



2nd order Difference Equations
3. Using the Lag operator
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 yt = y*

+ (t +1t-1+2t-2 +3t-3 + )

 yt = y* +  (L)t

where

 (L)= 1+1L+2L
2 +3L

3 + 



2nd order Difference Equations
3. Using the Lag operator

31Macroeconometrics

Summary

(1 – a1 L – a2 L2) yt = a0 + t

 a(L) yt = a0 + t

 yt = a(L)-1a0 + a(L) -1t

 yt = y* +  (L) t



2nd order Difference Equations
4. IRF and stability conditions
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yt = y*+(t +1t-1+2t-2 +3t-3 + )

Impulse Response Function

What are the impacts of a TRANSITORY shock t

on the present and future values of yt ? (multipliers  IRF)

 yt+n /  t =
1     for  n = 0

n for  n = 1, 2, 3, ...



2nd order Difference Equations
4. IRF and stability conditions
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How to factorize:

(1–a1L–a2 L2) = (1–1L) (1–2L)  ?

Find roots of characteristic polynomial:

i.e., solve:   2 – a1 – a2 = 0



2nd order Difference Equations
4. IRF and stability conditions

2. Finding the solution
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Find solutions of 2 – a1 – a2 = 0

2

4
,

2

2

11

21

aaa +
=



2nd order Difference Equations
4. IRF and stability conditions

2. Finding the solution
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Case 1. 1  2 real

Case 2. 1 = 2 real

Case 3. 1 and 2 complex conjugate,

1 = a + b i , 2 = a − b i



2nd order Difference Equations
4. IRF and stability conditions
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Case 1. 1  2 real

Impulse Response Function

n =  yt+n /  t = c1 1
n + c2 2

n

where c1 and c2 are some constants



2nd order Difference Equations
4. IRF and stability conditions
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Case 1. 1  2 real

Impulse Response Function

n =  yt+n /  t = c1 1
n + c2 2

n

Stability Conditions: |1| < 1  and   |2| < 1



2nd order Difference Equations
4. IRF and stability conditions
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Case 2. 1 = 2 real

Impulse Response Function

n =  yt+n /  t = c1 1
n + c2 n2

n-1

where c1 and c2 are some constants



2nd order Difference Equations
4. IRF and stability conditions
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Case 2. 1 = 2 real

Impulse Response Function

n =  yt+n /  t = c1 1
n + c2 n2

n-1

Stability Conditions: |1| < 1  and   |2| < 1



2nd order Difference Equations
4. IRF and stability conditions
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Case 3. 1 = a + b i , 2 = a − b i

Before showing the IRF

we review the “complex numbers”



2nd order Difference Equations
4. IRF and stability conditions
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a + bi 

r2 = a2 + b2

tan( )= b / a



2nd order Difference Equations
4. IRF and stability conditions
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a + bi r = [a2 + b2]1/2

 = arctan (b/a) = arg(b/a)

Modulus or amplitude

Angle , argument, or phase

POLAR COORDINATES



2nd order Difference Equations
4. IRF and stability conditions
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a + bi 

= r [ cos( ) + i sin ( ) ]

= r ei

r = [a2 + b2]1/2

 = arg (b / a )



2nd order Difference Equations
4. IRF and stability conditions
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Case 3. 1 = a + b i , 2 = a − b i

Impulse Response Function

n =  yt+n /  t = c1 1
n + c2 2

n

= 1 rn cos (  n +2 )

where c1 , c2 , 1, and  2 are some constants



2nd order Difference Equations
4. IRF and stability conditions
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Case 3. 1 = a + b i , 2 = a − b i

Impulse Response Function

n =  yt+n /  t = c1 1
n + c2 2

n

= 1 rn cos (  n +2 )

Stability Condition:  |r| = r < 1



2nd order Difference Equations
4. IRF and stability conditions
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Case 3. 1 = a + b i , 2 = a − b i

Generates sinusoidal cycles 

with periodicity 2/

Impulse Response Function

n =  yt+n /  t = c1 1
n + c2 2

n

= 1 rn cos (  n +2 )
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2nd order Difference Equations
4. IRF and Stability condition

Stability Condition

for all cases 1-3:

Characteristic roots

1 and 2

have to be

inside the unit circle

12

1

1

-1

-1
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2nd order Difference Equations
4. IRF and Stability condition

Stability Condition

for all cases 1-3:

Characteristic roots

1 and 2

have to be

inside the unit circle

1

2

1

1

-1

-1



pth order Difference Equations

1. Finding the solution given initial conditions

2. Equilibrium solution

3. Using the Lag operator

4. IRF and stability conditions
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pth order Difference Equations
1. Finding the solution given initial conditions
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Iterating forward→ Need p initial conditions

Example for p=3: Gretl program sim_dif_eq_3.inp

yt = a0 + a1 yt-1 +  + ap yt-p + t



pth order Difference Equations
2. Equilibrium solution
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Equilibrium solution:

y* = a0 / (1 – a1 –  – ap )

yt = a0 + a1 yt-1 +  + ap yt-p + t



pth order Difference Equations
3. Using the Lag operator
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Assuming Stability Condition:

(1 – a1 L –  – ap Lp) yt = a0 + t

 a(L) yt = a0 + t

 yt = a(1)-1a0 + a(L) -1t

 yt = y* +  (L) t



pth order Difference Equations
3. Using the Lag operator
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Note:

a(L) yt = a0 + t

 yt = y* + a(L) -1 t

 a(L) (yt –y*) = t



pth order Difference Equations
4. IRF and stability conditions
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yt = y*+(t +1t-1+2t-2 +3t-3 + )

Impulse Response Function

What are the impacts of a TRANSITORY shock t

on the present and future values of yt ? (multipliers  IRF)

 yt+n /  t =
1     for  n = 0

n for  n = 1, 2, 3, ...



pth order Difference Equations
4. IRF and stability conditions
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How to factorize:

(1 – a1 L –  – ap Lp) 

= (1–1L)  (1–pL)  ?

Find roots of characteristic polynomial:

i.e., solve:   p – a1
p-1 –  – ap = 0



pth order Difference Equations
4. IRF and stability conditions
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Stability Condition:

All characteristic roots

1 , 2 , ... ,p

have to be inside the unit circle



pth order Difference Equations
4. IRF and stability conditions
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Another way to find 1 , 2 , ... ,p:

1st → Find roots of Lag polynomial a(L)

i.e., solve: (1 – a1 z –  – ap zp) = 0

and get roots z1 , z2 , ... ,zp .

2nd → 1 =z1
-1 , 2 = z2

-1, ... ,p = zp
-1



pth order Difference Equations
4. IRF and stability conditions
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Stability Condition:

All roots of Lag polynomial

z1 , z2 , ... , zp

have to be outside the unit circle



pth order Difference Equations
4. IRF and stability conditions
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Suppose stability condition holds, then:

Long-run (LR) impact on y:

• transitory shock in  has no LR impact on y

• permanent shock in  has a LR impact on y:

 (1) = a(1) -1



pth order Difference Equations
4. IRF and stability conditions
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Additional resources

• Finding roots in Scientific Workplace/Wolfram|Alpha:

➢sim_dif_eq.pdf

• Simulations in Gretl:

➢sim_diff_eq_1/2/3.inp

• IRF in Gretl

➢sim_diff_eq_2_irf.inp

• Simulations in Excel:

➢excel diff eq order 1/2/3.xlsx


