

# MACROECONOMETRICS Master in Economics

# Difference Equations Part II – Doing the Math

# **Difference Equations**

#### **Topics**

#### **Linear difference equations:**

- 1st order
- 2nd order
- *p*th order



- **1. Finding the solution given an initial condition**
- 2. Equilibrium solution
- 3. Impulse response function
- 4. Stability condition
- 5. Finding a solution without an initial condition

#### 6. Finding a solution using the Lag operator

$$y_t = a_0 + a_1 y_{t-1} + \varepsilon_t$$
 for all  $t$ 

Finding a solution for  $\{y_t\}$ as a function of the forcing process  $\{\varepsilon_t\}$ 

We will look at three approaches:

- **1. Finding a solution given an initial condition**
- **5. Finding a solution without an initial condition**

6. Finding a solution using the Lag operator

# **1. Finding the solution given an initial condition**

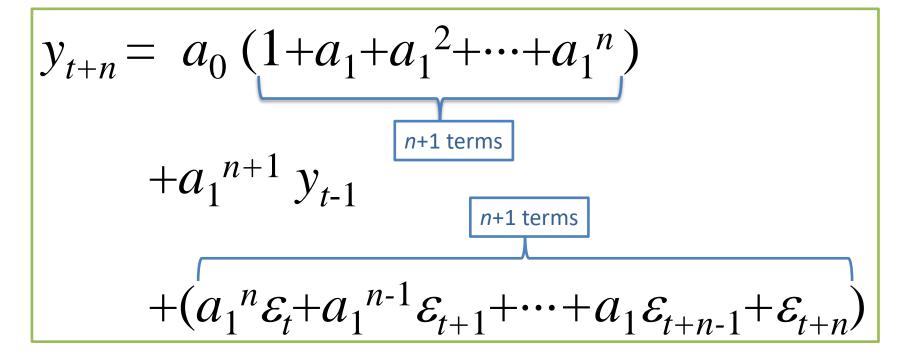
- We start at time *t*-1
- Assume  $y_{t-1}$  is known
- Iterate forward from t-1 to t, t+1, ..., t+n, ...

$$\begin{aligned} \underline{y_t} &= a_0 + a_1 \, \underline{y_{t-1}} + \mathcal{E}_t \\ y_{t+1} &= a_0 + a_1 \, \underline{y_t} + \mathcal{E}_{t+1} \\ &= a_0 + a_1 \, (a_0 + a_1 \, \underline{y_{t-1}} + \mathcal{E}_t) + \mathcal{E}_{t+1} \\ &= (a_0 + a_1 a_0) + a_1^2 \, \underline{y_{t-1}} + (a_1 \mathcal{E}_t + \mathcal{E}_{t+1}) \end{aligned}$$



## **1st order Difference Equations 1. Finding the solution given an initial condition**

...after n+1 iterations (from t to t+n):





# **1st order Difference Equations 2. Equilibrium solution**

$$y_t = a_0 + a_1 y_{t-1} + \mathcal{E}_t$$

Is there an equilibrium solution?

Meaning: a value for y, call it  $y^*$ , such that if :

• 
$$y_{t-1} = y^*$$

• and no future shocks:  $\varepsilon_t = \varepsilon_{t+1} = \cdots = \varepsilon_{t+n} = \cdots = 0$ then  $y_t = y_{t+1} = \cdots = y_{t+n} = \cdots = y^*$ . Let's find it:  $y^* = a_0 + a_1 y^* \Rightarrow y^* = a_0 / (1 - a_1)$ Note:  $a_0 = (1 - a_1) y^*$ 

N D NOVA SCHOOL OF BUSINESS & ECONOMICS

# **1st order Difference Equations 2. Equilibrium solution**

Note: We can rewrite

$$y_{t} = a_{0} + a_{1} y_{t-1} + \mathcal{E}_{t}$$

$$y_{t} = y^{*} + a_{1} (y_{t-1} - y^{*}) + \mathcal{E}_{t}$$

as

As before, find solution by iterating forward from  $y_{t-1}$ : ... and after n+1 iterations (from t to t+n) we get:

$$y_{t+n} = y^* + a_1^{n+1} (y_{t-1} - y^*) + (a_1^n \mathcal{E}_t + a_1^{n-1} \mathcal{E}_{t+1} + \dots + a_1 \mathcal{E}_{t+n-1} + \mathcal{E}_{t+n})$$

NOVA SCHOOL OF BUSINESS & ECONOMICS 1st order Difference Equations3. Impulse response function

$$y_{t+n} = y^* + a_1^{n+1} (y_{t-1} - y^*) + (a_1^n \mathcal{E}_t + a_1^{n-1} \mathcal{E}_{t+1} + \dots + a_1 \mathcal{E}_{t+n-1} + \mathcal{E}_{t+n})$$

What are the impacts of a **TRANSITORY** shock  $\varepsilon_t$ (meaning:  $\varepsilon_t = 1$ ,  $\varepsilon_{t+1} = \varepsilon_{t+2} = ...=0$ ) on the present and future values of  $y_t$ ? (multipliers = IRF)

$$\partial y_{t+n} / \partial \mathcal{E}_t = \begin{cases} 1 & \text{for } n = 0 \\ a_1^n & \text{for } n = 1, 2, 3, \dots \end{cases}$$



# 1st order Difference Equations3. Impulse response function

Note:

$$\partial y_{t+n} / \partial \varepsilon_t = \partial y_t / \partial \varepsilon_{t-n}$$
$$= \begin{cases} 1 & \text{for } n = 0\\ a_1^n & \text{for } n = 1, 2, 3, \dots \end{cases}$$



# **1st order Difference Equations 4. Stability condition**

How does the IRF look like for different  $a_1$ ?

- $a_1 > 1 \rightarrow \text{explosive}$
- $a_1 = 1 \rightarrow \text{permanent impact}$
- $0 < a_1 < 1 \rightarrow$  dies out exponentially
- $a_1 = 0 \rightarrow$  impact only when shock occurs, not in future
- $-1 < a_1 < 0 \rightarrow$  dies out expon. & oscillates +/- every period
- $a_1 = -1 \rightarrow \text{permanent impact & oscillates +/- every period}$
- $a_1 < -1 \rightarrow$  explosive & oscillates +/- every period

**1st order Difference Equations 4. Stability condition** 

Some simulations.

In all these cases:

- initial condition at time  $0: y_0 = 1$
- • $\varepsilon_t$  are random shocks

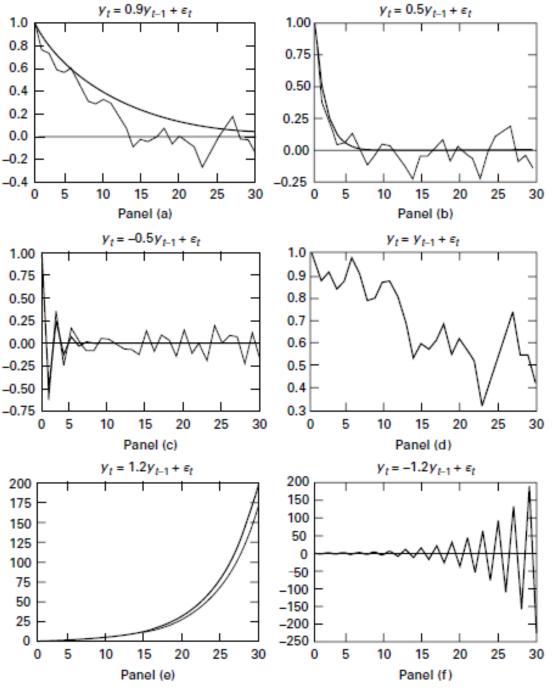


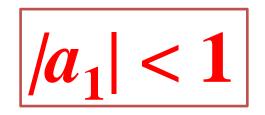
FIGURE 1.2 Convergent and Nonconvergent Sequences

# **1st order Difference Equations 4. Stability condition**

| Simulation in Gretl: sim_diff_eq_1.inp<br># Simulate a 1st order difference equation:<br># y(t) = a0 + a1*y(t-1) + epsilon(t) | <pre># Initialize the two series: y , y_zeroshocks series y = 0 series y_zeroshocks = 0</pre> |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| <pre># epsilon: random shocks # y: the solution</pre>                                                                         | # Initial condition<br>smpl 1900 1900                                                         |
| # y_zeroshocks: solution without shocks                                                                                       | y = 1<br>y_zeroshocks = 1                                                                     |
| # Create data set with annual data, 1900-1950<br>nulldata 51<br>setobs 1 1900time-series                                      | # Iterate forward until the end of the sample smpl 1901 1950                                  |
| # Generate Normal random shocks with                                                                                          | y = a0 + a1*y(-1) + epsilon<br>y_zeroshocks = a0 + a1*y_zeroshocks(-1)                        |
| <pre># some standard deviation and zero mean scalar epsilon_sd=0.1</pre>                                                      | # Finally, reset to the full sample smpl 1900 1950                                            |
| series epsilon=normal(0,epsilon_sd)<br># Set a0 and a1<br>scalar a0=0<br>scalar a1=0.9                                        | # Graph the simulated series<br>gnuplot y y_zeroshockstime-serieswith-lines<br>output=display |



# **1st order Difference Equations 4. Stability condition**





**1st order Difference Equations**  
**Back to 3. Impulse response function**  

$$y_{t+n} = y^* + a_1^{n+1} (y_{t-1} - y^*) + (a_1^n \mathcal{E}_t + a_1^{n-1} \mathcal{E}_{t+1} + \dots + a_1 \mathcal{E}_{t+n-1} + \mathcal{E}_{t+n})$$
What are the impacts of a **PERMANENT** shock ?  
This means that  $\varepsilon_t$ ,  $\varepsilon_{t+1}$ ,  $\varepsilon_{t+2}$ , ..., all increase by 1 unit.  
**Impact on**  $y_{t+n}$  **is**  $a_1^n + a_1^{n-1} + \dots + a_1 + 1$ 

Impact of a permanent shock is the cumulative IRF !

## **1st order Difference Equations** Back to 3. Impulse response function

Suppose stability condition holds:  $|a_1| < 1$ 

Long-run impact on *y* of a:

- transitory shock in  $\varepsilon$  is equal to zero
- permanent shock in  $\varepsilon$  is given by  $1/(1 a_1)$



### 5. Finding a solution without an initial condition

- We start at time *t*
- Iterate backward:

 $\begin{aligned} y_t &= a_0 + a_1 y_{t-1} + \varepsilon_t \\ y_t &= a_0 + a_1 (a_0 + a_1 y_{t-2} + \varepsilon_{t-1}) + \varepsilon_t \\ &= (a_0 + a_1 a_0) + a_1^2 y_{t-2} + (a_1 \varepsilon_{t-1} + \varepsilon_t) \\ y_t &= (a_0 + a_1 a_0 + a_1^2 a_0 + \cdots) + a_1^\infty y_{t-\infty} \\ &+ (\varepsilon_t + a_1 \varepsilon_{t-1} + a_1^2 \varepsilon_{t-2} + \cdots) \end{aligned}$ 

Note: just to simplify, the notation is a bit sloppy: one should use limits.

N OVA SCHOOL OF BUSINESS & ECONOMICS

## 5. Finding a solution without an initial condition

#### Assumptions:

- {  $y_t$  } is bounded, meaning  $|y_t| < \infty$  for all t
- Stability condition holds:  $|a_1| < 1$

We have found a solution:

$$y_t = y^* + (\varepsilon_t + a_1 \varepsilon_{t-1} + a_1^2 \varepsilon_{t-2} + \cdots)$$

where: 
$$y^* = a_0 / (1 - a_1)$$



#### 5. Finding a solution without an initial condition

#### A Solution:

$$y_t = y^* + (\varepsilon_t + a_1 \varepsilon_{t-1} + a_1^2 \varepsilon_{t-2} + \cdots)$$

Note: Because there is no initial condition,

there are actually other possible solutions, such as:  $y_t = c a_1^t + y^* + (\varepsilon_t + a_1 \varepsilon_{t-1} + a_1^2 \varepsilon_{t-2} + \cdots)$ where *c* is some constant.

But also note that this solution is unbounded since  $ca_1^t$  diverges when  $t \rightarrow -\infty$  unless c = 0.



# **1st order Difference Equations 6. Finding a solution using the Lag operator** The Lag operator: $L y_t = y_{t-1}$ & L c = c

Rewrite:

$$y_t = a_0 + a_1 y_{t-1} + \varepsilon_t$$

as:

$$y_t = a_0 + a_1 L y_t + \varepsilon_t$$
$$\Leftrightarrow$$
$$(1 - a_1 L) y_t = a_0 + \varepsilon_t$$



# **1st order Difference Equations 6. Finding a solution using the Lag operator**

Can we solve:

$$(1 - a_1 L) y_t = a_0 + \varepsilon_t$$

as:

$$y_t = (1 - a_1 L)^{-1} (a_0 + \varepsilon_t)$$
 ?

Answer: Yes, if these assumptions are valid:

- $\{ y_t \}$  is bounded,
- Stability condition:  $|a_1| < 1$ . In this case:

$$(1 - a_1 L)^{-1} \equiv (1 + a_1 L + a_1^2 L^2 + \cdots)$$

# **1st order Difference Equations** 6. Finding a solution using the Lag operator

Doing the derivations we have:

$$(1 - a_{1} L) y_{t} = a_{0} + \varepsilon_{t}$$

$$\Leftrightarrow y_{t} = (1 - a_{1} L)^{-1} (a_{0} + \varepsilon_{t})$$

$$\Leftrightarrow y_{t} = (1 + a_{1} L + a_{1}^{2} L^{2} + \cdots) (a_{0} + \varepsilon_{t})$$

$$\Leftrightarrow y_{t} = (1 + a_{1} L + a_{1}^{2} L^{2} + \cdots) a_{0}$$

$$+ (1 + a_{1} L + a_{1}^{2} L^{2} + \cdots) \varepsilon_{t}$$

$$\Leftrightarrow y_{t} = (a_{0} + a_{1} a_{0} + a_{1}^{2} a_{0} + \cdots)$$

$$+ (\varepsilon_{t} + a_{1} \varepsilon_{t-1} + a_{1}^{2} \varepsilon_{t-2} + \cdots)$$

$$\Leftrightarrow y_{t} = y^{*} + (\varepsilon_{t} + a_{1} \varepsilon_{t-1} + a_{1}^{2} \varepsilon_{t-2} + \cdots)$$

N OVA SCHOOL OF BUSINESS & ECONOMICS

- **1. Finding the solution given initial conditions**
- **2. Equilibrium solution**
- 3. Using the Lag operator
- 4. IRF and stability conditions



# **2nd order Difference Equations 1. Finding the solution given initial conditions**

$$y_t = a_0 + a_1 y_{t-1} + a_2 y_{t-2} + \varepsilon_t$$

Iterating forward  $\rightarrow$  Need <u>2 initial conditions</u> For instance, if we know values of  $y_{-1}$  and  $y_0$  then:

$$y_{1} = a_{0} + a_{1} y_{0} + a_{2} y_{-1} + \varepsilon_{1}$$
  

$$y_{2} = a_{0} + a_{1} y_{1} + a_{2} y_{0} + \varepsilon_{2}$$
  

$$= a_{0} + a_{1} (a_{0} + a_{1} y_{0} + a_{2} y_{-1} + \varepsilon_{1}) + a_{2} y_{0} + \varepsilon_{2}$$
  
etc.

#### Examples: use Gretl program sim\_dif\_eq\_2.inp

# 2nd order Difference Equations 2. Equilibrium solution

$$y_t = a_0 + a_1 y_{t-1} + a_2 y_{t-2} + \varepsilon_t$$

Is there an equilibrium solution?

Meaning: a value for y, call it  $y^*$ , such that if :

•  $y_{t-1} = y^*$ 

• and no future shocks:  $\varepsilon_t = \varepsilon_{t+1} = \cdots = \varepsilon_{t+n} = \cdots = 0$ then  $y_t = y_{t+1} = \cdots = y_{t+n} = \cdots = y^*$ .

Let's find it: 
$$y^* = a_0 + a_1 y^* + a_2 y^* \Rightarrow$$
  
 $y^* = a_0 / (1 - a_1 - a_2)$ 



Let's use the lag operator:

$$y_t = a_0 + a_1 y_{t-1} + a_2 y_{t-2} + \varepsilon_t$$

$$\Leftrightarrow (\mathbf{1} - \mathbf{a}_1 \mathbf{L} - \mathbf{a}_2 \mathbf{L}^2) \mathbf{y}_t = \mathbf{a}_0 + \mathbf{\varepsilon}_t$$

$$\Leftrightarrow y_t = (\mathbf{1} - a_1 \mathbf{L} - a_2 \mathbf{L}^2)^{-1} (a_0 + \varepsilon_t)$$

# Is it possible? What does it mean?

Suppose we can factorize:

$$(1 - a_1 L - a_2 L^2) = (1 - \lambda_1 L) (1 - \lambda_2 L)$$

so that

 $(1 - a_1 L - a_2 L^2)^{-1} = (1 - \lambda_1 L)^{-1} (1 - \lambda_2 L)^{-1}$ 

Note: This result is valid only when Stability Conditions are ok (we'll check this later)



It follows that:

$$y_{t} = (1 - a_{1} L - a_{2} L^{2})^{-1} a_{0}$$
  
+  $(1 - a_{1} L - a_{2} L^{2})^{-1} \varepsilon_{t}$   
 $\Leftrightarrow y_{t} = a_{0} / (1 - a_{1} - a_{2})$   
+  $(1 - \lambda_{2}L)^{-1} (1 - \lambda_{1}L)^{-1} \varepsilon_{t}$   
 $\Leftrightarrow y_{t} = y^{*}$   
+  $(1 - \lambda_{2}L)^{-1} (\varepsilon_{t} + \lambda_{1}\varepsilon_{t-1} + \lambda_{1}^{2}\varepsilon_{t-2} + \cdots)$ 



 $y_t = y^*$ + $(1-\lambda_2 L)^{-1}(\varepsilon_t + \lambda_1 \varepsilon_{t-1} + \lambda_1^2 \varepsilon_{t-2} + \cdots)$  $\Leftrightarrow y_t = y^*$  $+(\mathcal{E}_t + \lambda_2 \mathcal{E}_{t-1} + \lambda_2^2 \mathcal{E}_{t-2} + \cdots)$ + $(\lambda_1 \mathcal{E}_{t-1} + \lambda_2 \lambda_1 \mathcal{E}_{t-2} + \lambda_2^2 \lambda_1 \mathcal{E}_{t-3} + \cdots)$ + $(\lambda_1^2 \mathcal{E}_{t-2} + \lambda_2 \lambda_1^2 \mathcal{E}_{t-3} + \lambda_2^2 \lambda_1^2 \mathcal{E}_{t-4} + \cdots)$ + •••



$$\Leftrightarrow y_t = y^* + (\varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + \psi_3 \varepsilon_{t-3} + \cdots)$$

$$\Leftrightarrow y_t = y^* + \psi(L)\varepsilon_t$$

where

$$\psi(L) = 1 + \psi_1 L + \psi_2 L^2 + \psi_3 L^3 + \cdots$$



# **2nd order Difference Equations** 3. Using the Lag operator Summary $(1 - a_1 L - a_2 L^2) y_t = a_0 + \varepsilon_t$ $a(L) y_t = a_0 + \varepsilon_t$ $\Leftrightarrow$ $y_t = a(L)^{-1}a_0 + a(L)^{-1}\mathcal{E}_t$ $\bigcirc$ $y_t = y^* + \psi(L) \mathcal{E}_t$ $\bigcirc$

$$y_t = y^* + (\varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + \psi_3 \varepsilon_{t-3} + \cdots)$$

# **Impulse Response Function**

What are the impacts of a **TRANSITORY** shock  $\varepsilon_t$ on the present and future values of  $y_t$ ? (multipliers = IRF)

$$\partial y_{t+n} / \partial \mathcal{E}_t = \begin{cases} 1 & \text{for } n = 0 \\ \psi_n & \text{for } n = 1, 2, 3, \dots \end{cases}$$



# How to factorize:

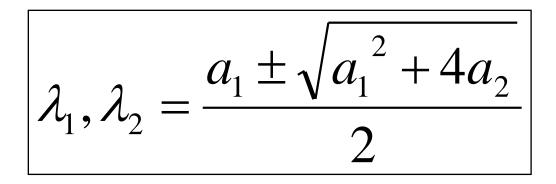
$$(1-a_1L-a_2L^2) = (1-\lambda_1L)(1-\lambda_2L)$$
 ?

Find roots of characteristic polynomial:

*i.e.*, solve: 
$$\lambda^2 - a_1\lambda - a_2 = 0$$



# Find solutions of $\lambda^2 - a_1\lambda - a_2 = 0$





Case 1. 
$$\lambda_1 \neq \lambda_2$$
 real

Case 2. 
$$\lambda_1 = \lambda_2$$
 real

Case 3. 
$$\lambda_1$$
 and  $\lambda_2$  complex conjugate,  
 $\lambda_1 = a + b i$ ,  $\lambda_2 = a - b i$ 



**2nd order Difference Equations 4. IRF and stability conditions** Case 1.  $\lambda_1 \neq \lambda_2$  real **Impulse Response Function** 

$$\psi_n = \partial y_{t+n} / \partial \varepsilon_t = c_1 \lambda_1^n + c_2 \lambda_2^n$$

where  $c_1$  and  $c_2$  are some constants



**2nd order Difference Equations 4. IRF and stability conditions** Case 1.  $\lambda_1 \neq \lambda_2$  real **Impulse Response Function** 

$$\psi_n = \partial y_{t+n} / \partial \varepsilon_t = c_1 \lambda_1^n + c_2 \lambda_2^n$$

Stability Conditions:  $|\lambda_1| < 1$  and  $|\lambda_2| < 1$ 



**2nd order Difference Equations 4. IRF and stability conditions** Case 2.  $\lambda_1 = \lambda_2$  real **Impulse Response Function** 

$$\psi_n = \partial y_{t+n} / \partial \varepsilon_t = c_1 \lambda_1^n + c_2 n \lambda_2^{n-1}$$

where  $c_1$  and  $c_2$  are some constants

**2nd order Difference Equations 4. IRF and stability conditions** Case 2.  $\lambda_1 = \lambda_2$  real **Impulse Response Function** 

$$\psi_n = \partial y_{t+n} / \partial \varepsilon_t = c_1 \lambda_1^n + c_2 n \lambda_2^{n-1}$$

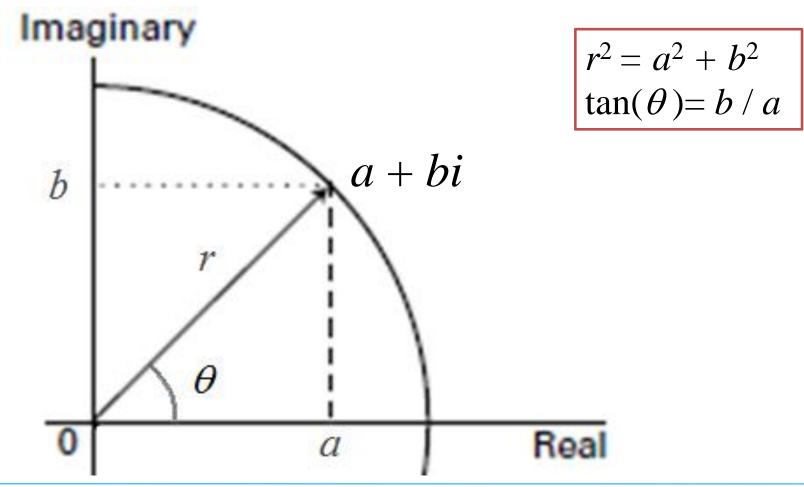
Stability Conditions:  $|\lambda_1| < 1$  and  $|\lambda_2| < 1$ 



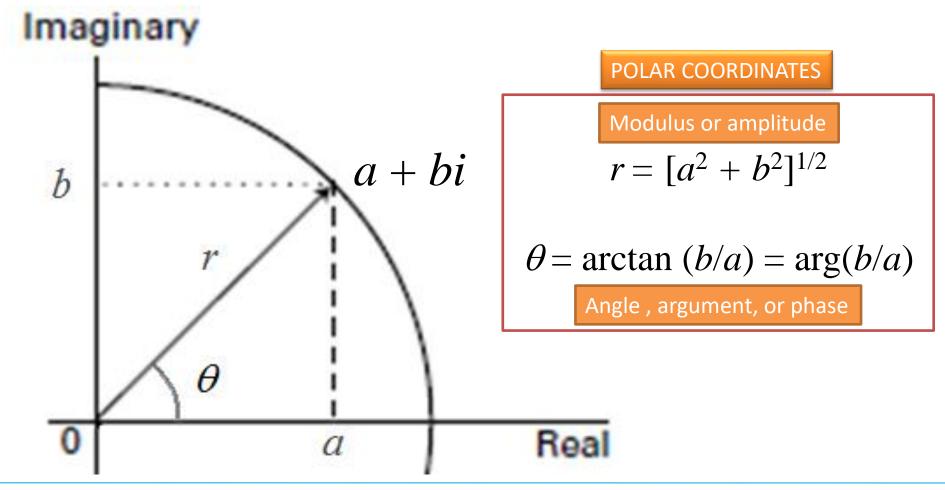
**2nd order Difference Equations 4. IRF and stability conditions** Case 3.  $\lambda_1 = a + b i$ ,  $\lambda_2 = a - b i$ 

### Before showing the IRF we review the "complex numbers"

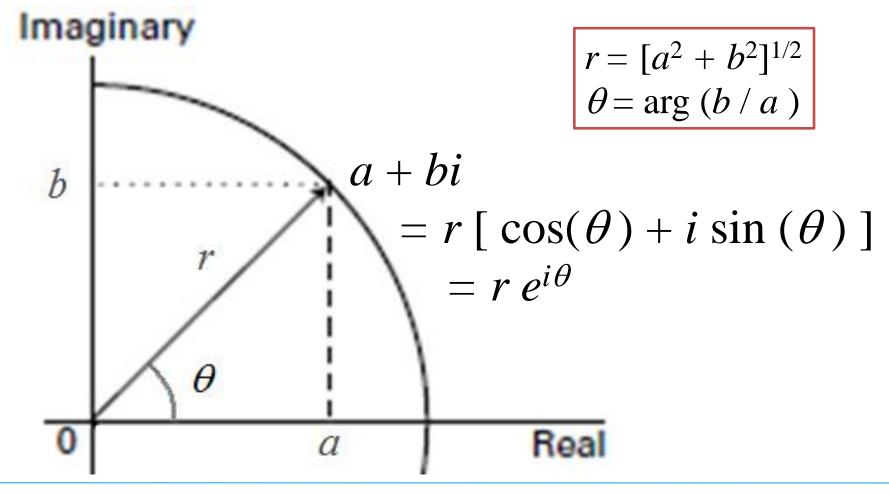
#### **2nd order Difference Equations 4. IRF and stability conditions**



#### **2nd order Difference Equations 4. IRF and stability conditions**



#### **2nd order Difference Equations 4. IRF and stability conditions**



**2nd order Difference Equations 4. IRF and stability conditions** Case 3.  $\lambda_1 = a + b i$ ,  $\lambda_2 = a - b i$ **Impulse Response Function** 

$$\psi_n = \partial y_{t+n} / \partial \varepsilon_t = c_1 \lambda_1^n + c_2 \lambda_2^n$$
$$= \beta_1 r^n \cos(\theta n + \beta_2)$$

where  $c_1$ ,  $c_2$ ,  $\beta_1$ , and  $\beta_2$  are some constants



**2nd order Difference Equations 4. IRF and stability conditions** Case 3.  $\lambda_1 = a + b i$ ,  $\lambda_2 = a - b i$ **Impulse Response Function** 

$$\psi_n = \partial y_{t+n} / \partial \varepsilon_t = c_1 \lambda_1^n + c_2 \lambda_2^n$$
$$= \beta_1 r^n \cos \left( \theta n + \beta_2 \right)$$

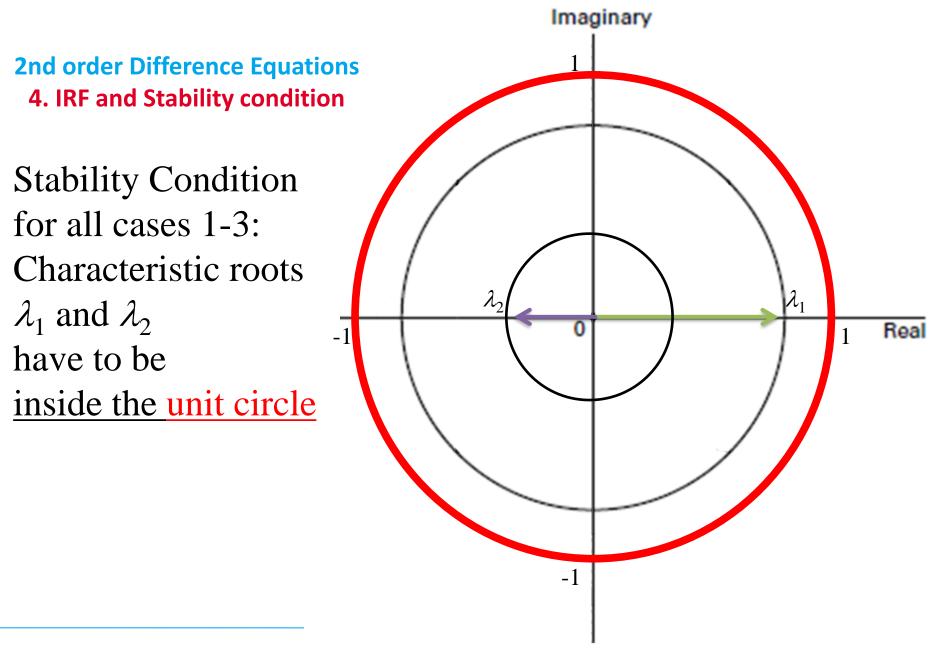
Stability Condition: 
$$|r| = r < 1$$



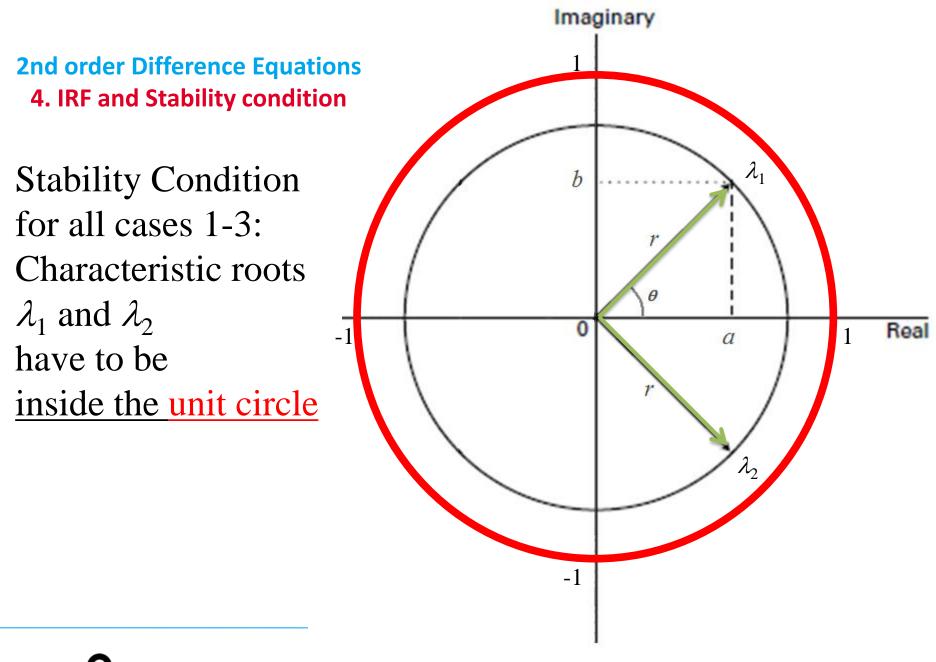
**2nd order Difference Equations 4. IRF and stability conditions** Case 3.  $\lambda_1 = a + b i$ ,  $\lambda_2 = a - b i$ **Impulse Response Function** 

$$\psi_n = \partial y_{t+n} / \partial \varepsilon_t = c_1 \lambda_1^n + c_2 \lambda_2^n$$
$$= \beta_1 r^n \cos(\theta n + \beta_2)$$

Generates sinusoidal cycles with periodicity 
$$2\pi/\theta$$







#### p<sup>th</sup> order Difference Equations

- 1. Finding the solution given initial conditions
- 2. Equilibrium solution
- 3. Using the Lag operator
- 4. IRF and stability conditions



## *p*<sup>th</sup> order Difference Equations 1. Finding the solution given initial conditions

$$y_t = a_0 + a_1 y_{t-1} + \dots + a_p y_{t-p} + \varepsilon_t$$

#### Iterating forward $\rightarrow$ Need <u>*p* initial conditions</u>

Example for *p*=3: Gretl program sim\_dif\_eq\_3.inp



# *p*<sup>th</sup> order Difference Equations 2. Equilibrium solution

$$y_t = a_0 + a_1 y_{t-1} + \dots + a_p y_{t-p} + \varepsilon_t$$

#### Equilibrium solution:

$$y^* = a_0 / (1 - a_1 - \dots - a_p)$$



$$p^{\text{th}} \text{ order Difference Equations}$$
3. Using the Lag operator
$$\underline{\text{Assuming Stability Condition:}}$$

$$(1 - a_1 L - \dots - a_p L^p) y_t = a_0 + \varepsilon_t$$

$$\Leftrightarrow \qquad a(L) y_t = a_0 + \varepsilon_t$$

$$\Leftrightarrow \qquad y_t = a(1)^{-1}a_0 + a(L)^{-1}\varepsilon_t$$

$$\Leftrightarrow \qquad y_t = y^* + \psi(L) \varepsilon_t$$



# *p*<sup>th</sup> order Difference Equations 3. Using the Lag operator

Note:

$$a(L) y_t = a_0 + \varepsilon_t$$

$$\Leftrightarrow \qquad y_t = y^* + a(L)^{-1} \varepsilon_t$$

$$\Leftrightarrow \qquad a(L) (y_t - y^*) = \varepsilon_t$$



$$y_t = y^* + (\varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + \psi_3 \varepsilon_{t-3} + \cdots)$$

#### **Impulse Response Function**

What are the impacts of a **TRANSITORY** shock  $\varepsilon_t$ on the present and future values of  $y_t$ ? (multipliers = IRF)

$$\partial y_{t+n} / \partial \varepsilon_t = \begin{cases} 1 & \text{for } n = 0 \\ \psi_n & \text{for } n = 1, 2, 3, \dots \end{cases}$$



How to factorize:

$$(1 - a_1 L - \dots - a_p L^p)$$
$$= (1 - \lambda_1 L) \cdots (1 - \lambda_p L) ?$$

Find roots of characteristic polynomial:

*i.e.*, solve: 
$$\lambda^p - a_1 \lambda^{p-1} - \dots - a_p = 0$$



### Stability Condition:

### All characteristic roots

 $\lambda_1$ ,  $\lambda_2$ , ...,  $\lambda_p$ 

### have to be inside the unit circle



Another way to find  $\lambda_1$ ,  $\lambda_2$ , ...,  $\lambda_p$ :  $1^{\text{st}} \rightarrow \text{Find roots of Lag polynomial } \boldsymbol{a}(\boldsymbol{L})$  *i.e.*, solve:  $(1 - a_1 z - \dots - a_p z^p) = 0$ and get roots  $z_1$ ,  $z_2$ , ...,  $z_p$ .

 $2^{\mathrm{nd}} \rightarrow \lambda_1 = z_1^{-1}$ ,  $\lambda_2 = z_2^{-1}$ , ...,  $\lambda_p = z_p^{-1}$ 



### Stability Condition:

### All roots of Lag polynomial

 $z_1$  ,  $z_2$  , ... ,  $z_p$ 

### have to be <u>outside</u> the unit circle



Suppose <u>stability condition holds</u>, then: Long-run (LR) impact on *y*:

- transitory shock in  $\varepsilon$  has no LR impact on y
- permanent shock in  $\varepsilon$  has a LR impact on y:

$$\psi(1) = a(1)^{-1}$$



Additional resources

- Finding roots in Scientific Workplace/Wolfram|Alpha:
   ≫sim\_dif\_eq.pdf
- IRF in Gretl

≽sim\_diff\_eq\_2\_irf.inp

• Simulations in Excel:

≻excel diff eq order 1/2/3.xlsx