

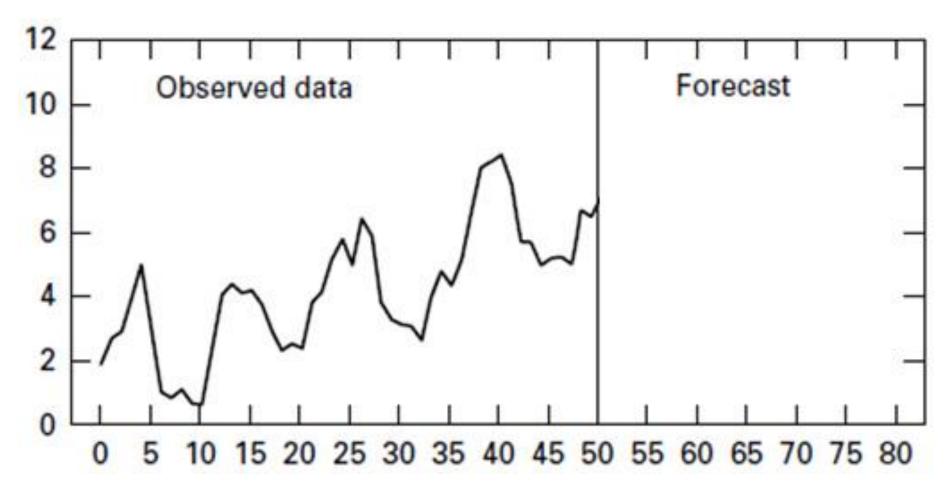
MACROECONOMETRICS Master in Economics

Difference Equations Part I - Introduction

Examples of Time-Series Models

- **1. Forecasting with an Unobserved Components Model**
- 2. Testing the Random Walk Hypothesis
- 3. Samuelson's Classical Model
- 4. Cobweb Model

1. Forecasting with an Unobserved Components Model Forecasting Problem



1. Forecasting with an Unobserved Components Model *"Structural Time-Series" Model: Trend+Seasonal+Irregular*

$$Y_t = T_t + S_t + I_t$$

$$Trend: T_t = 1 + 0.1t$$
Seasonal: $S_t = 1.6 \sin(t\pi/6)$
Irregular: $I_t = 0.7 I_{t-1} + \varepsilon_t$

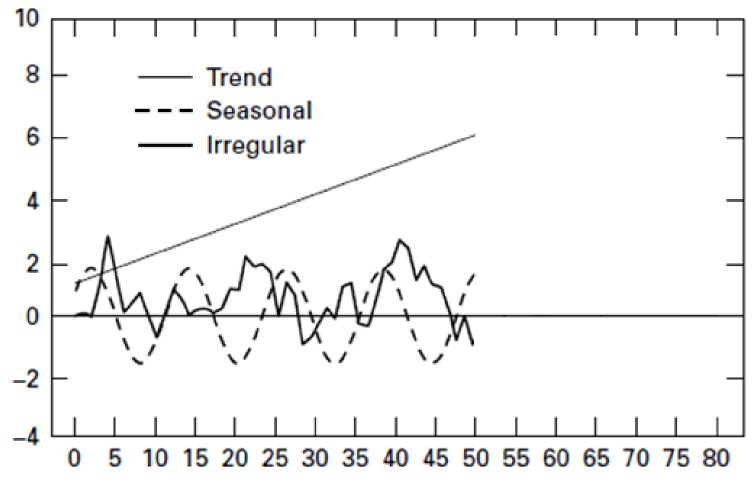
Notes:

- Trend is deterministic with slope 0.1
- Sine function generates a full cycle from 0 to 2π (degrees measured in radians)

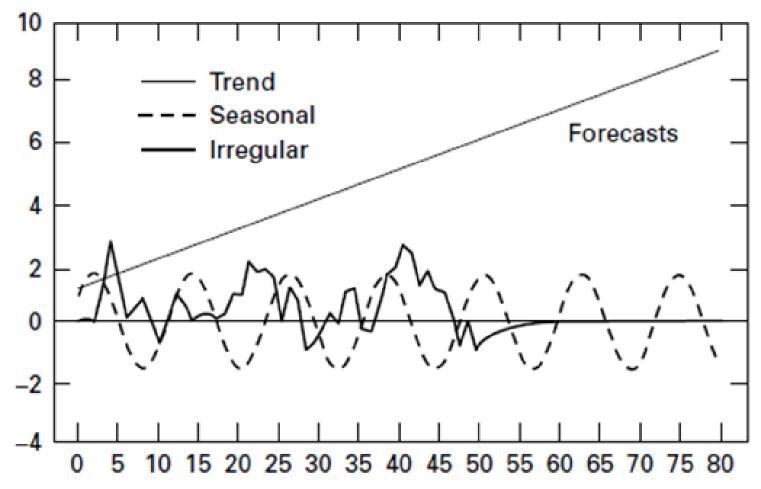
 \Rightarrow Seasonality cycles have a periodicity equal to 12: t π / 6 = 2 π \Leftrightarrow t = 12

- Irregular has an autocorrelation of 0.7
- + $\boldsymbol{\epsilon}_t$ are uncorrelated random shocks with zero mean

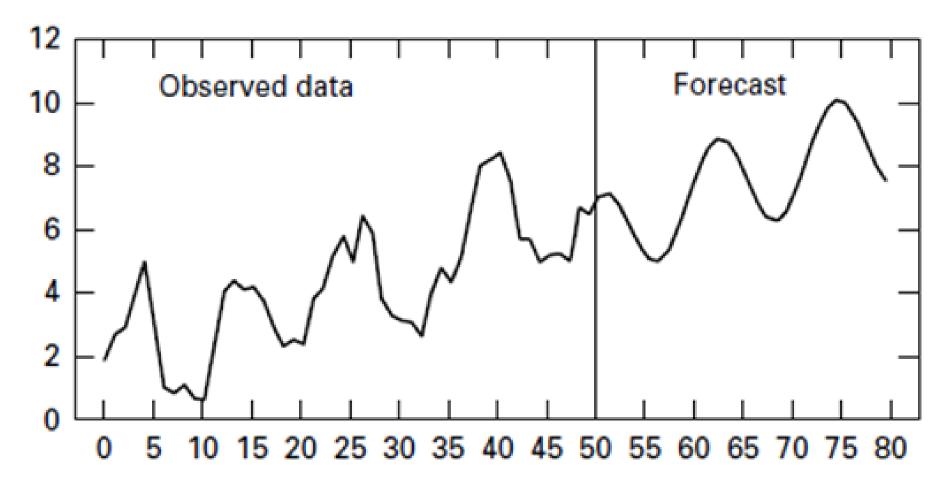
1. Forecasting with an Unobserved Components Model Estimate the Unobserved Components



1. Forecasting with an Unobserved Components Model Forecast the Components

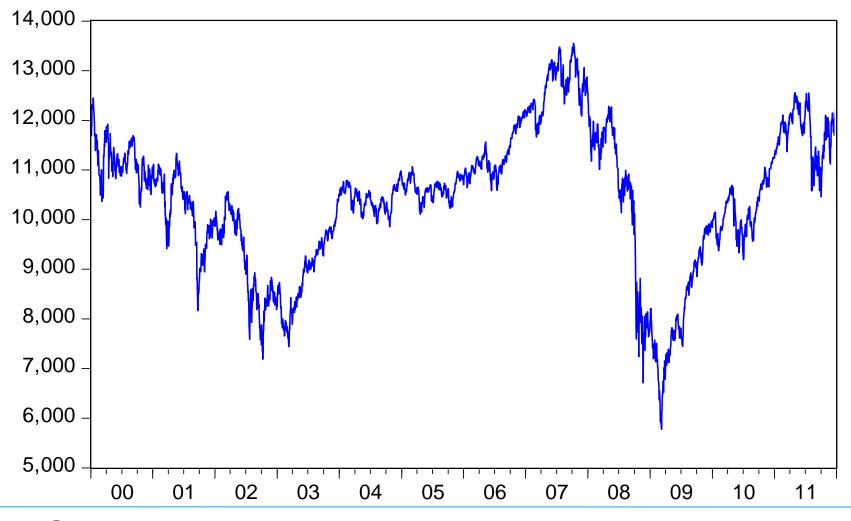


1. Forecasting with an Unobserved Components Model Forecast the Original Series

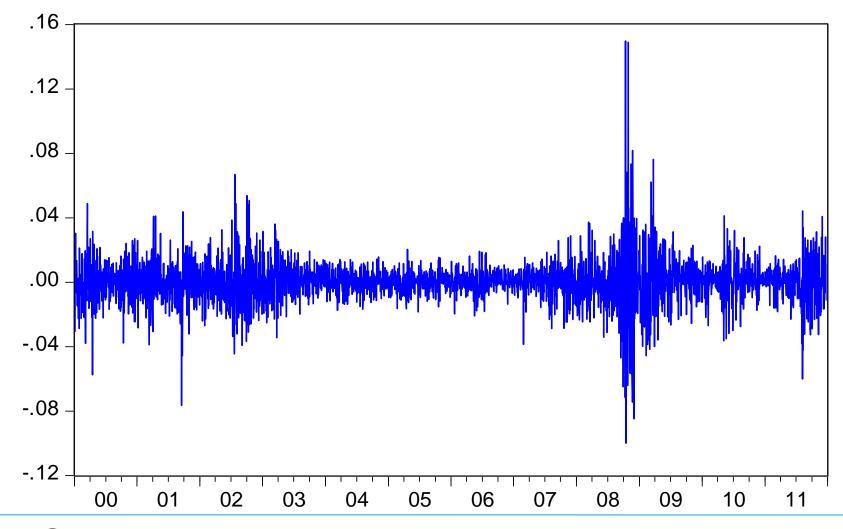


2. Testing the Random Walk Hypothesis

Dow Jones (NY) Index



2. Testing the Random Walk Hypothesis Dow Jones (NY) Return



Macroeconometrics

2. Testing the Random Walk Hypothesis

Random Walk:
$$y_{t+1} = y_t + \varepsilon_{t+1}$$

or
 $\Delta y_{t+1} = \varepsilon_{t+1}$

Test in a regression $\Delta y_{t+1} = \alpha_0 + \alpha_1 y_t + \varepsilon_{t+1}$

that: $H_0: \alpha_0 = \alpha_1 = 0$

3. Samuelson's Classical Model

Stochastic version of Samuelson' classic model: $\begin{cases}
y_t = c_t + i_t \\
c_t = \alpha y_{t-1} + \varepsilon_{ct} & 0 < \alpha < 1 \\
i_t = \beta(c_t - c_{t-1}) + \varepsilon_{it} & \beta > 0
\end{cases}$

Endogenous variables: y_{t} , c_{t} , i_{t} Predetermined variables: y_{t-1} , c_{t-1} Stochastic disturbances: \mathcal{E}_{ct} , \mathcal{E}_{it}

3. Samuelson's Classical Model

Stochastic version of Samuelson' classic model:

$$y_{t} = c_{t} + i_{t}$$

$$c_{t} = \alpha y_{t-1} + \varepsilon_{ct} \qquad 0 < \alpha < 1$$

$$i_{t} = \beta(\underline{c_{t}} - c_{t-1}) + \varepsilon_{it} \qquad \beta > 0$$
Structural equation for investment
A reduced-form equation for investment

$$i_{t} = \beta[\alpha y_{t-1} + \varepsilon_{ct} - c_{t-1}] + \varepsilon_{it}$$

$$= \alpha \beta y_{t-1} - \beta c_{t-1} + \beta \varepsilon_{ct} + \varepsilon_{it}$$

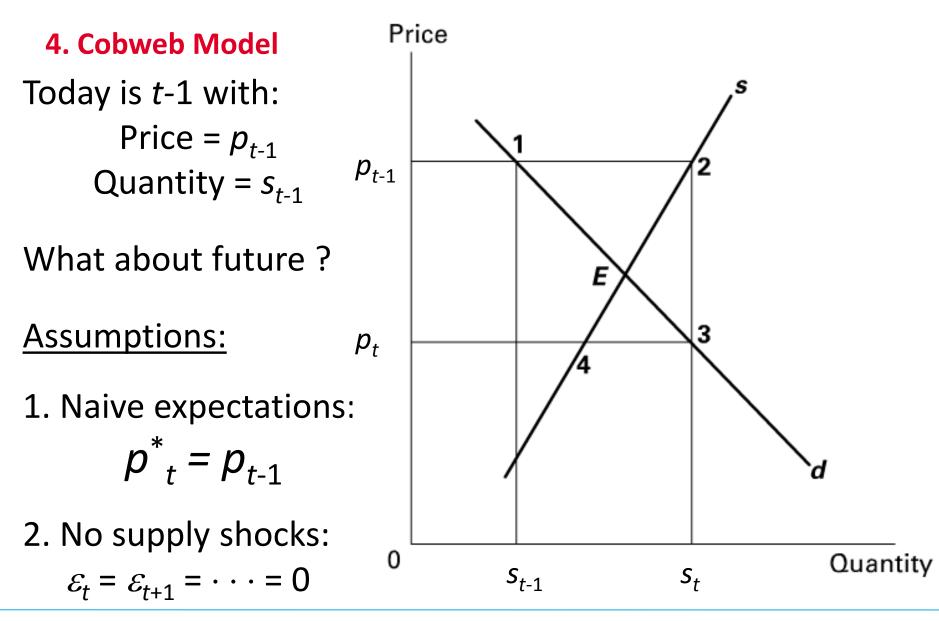
3. Samuelson's Classical Model

Solving for c_t and i_t and substituting in y_t we get:

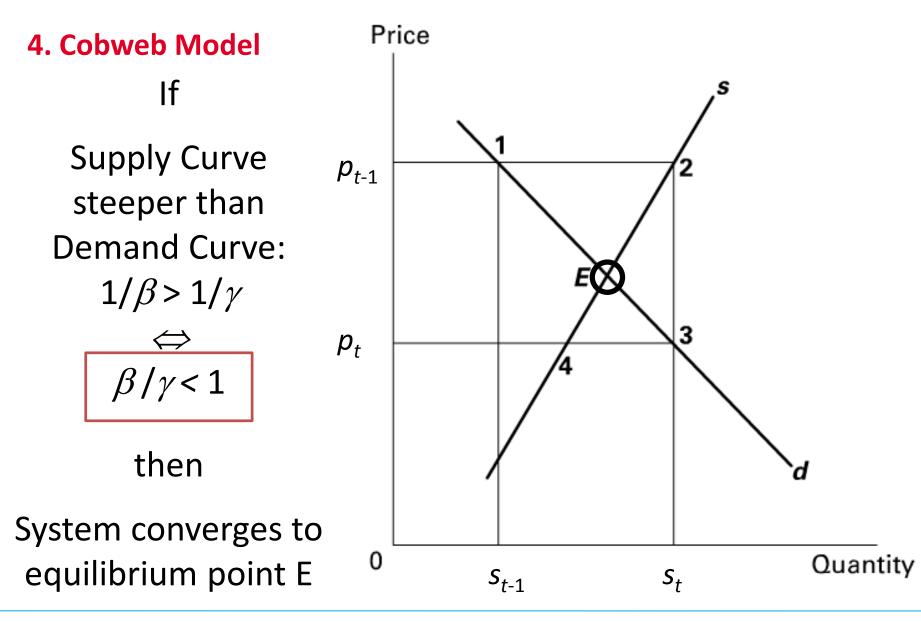
$$y_{t} = \alpha y_{t-1} + \varepsilon_{ct} + \alpha \beta (y_{t-1} - y_{t-2}) + \beta (\varepsilon_{ct} - \varepsilon_{ct-1}) + \varepsilon_{it}$$
$$= \alpha (1 + \beta) y_{t-1} - \alpha \beta y_{t-2} + (1 + \beta) \varepsilon_{ct} + \varepsilon_{it} - \beta \varepsilon_{ct-1}$$
$$\square$$
A univariate reduced-form equation for y_{t}

$$\begin{cases} d_t = a - \gamma p_t & \gamma > 0 \\ s_t = b + \beta p_t^* + \varepsilon_t & \beta > 0 \\ s_t = d_t \end{cases}$$

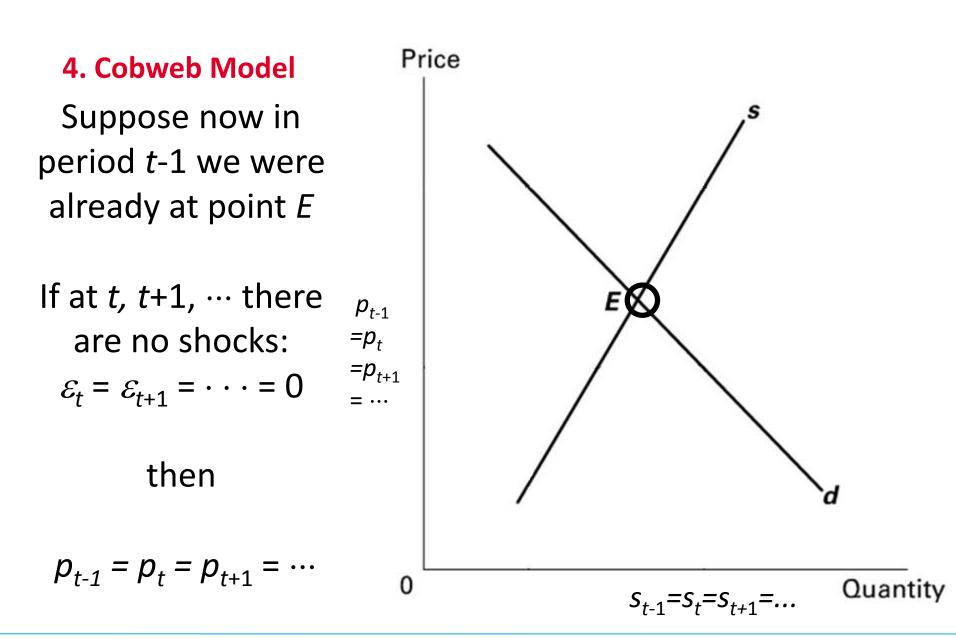
- d_t = demand for wheat in period t
- s_t = supply of wheat in t
- p_t = market price of wheat in t
- p_t^* = price that farmers expect to prevail at t
 - ε_t = a zero mean stochastic supply shock



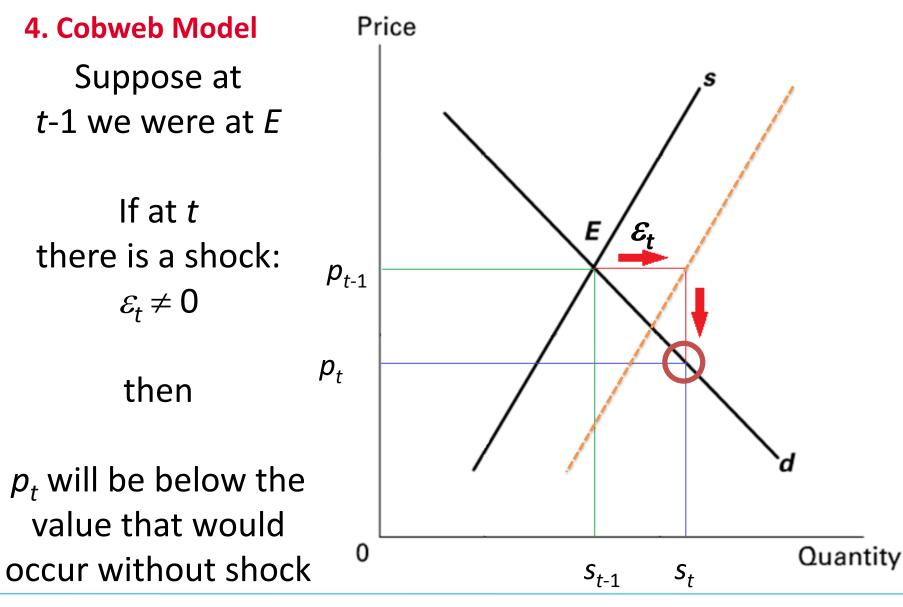
NOVA SCHOOL OF BUSINESS & ECONOMICS



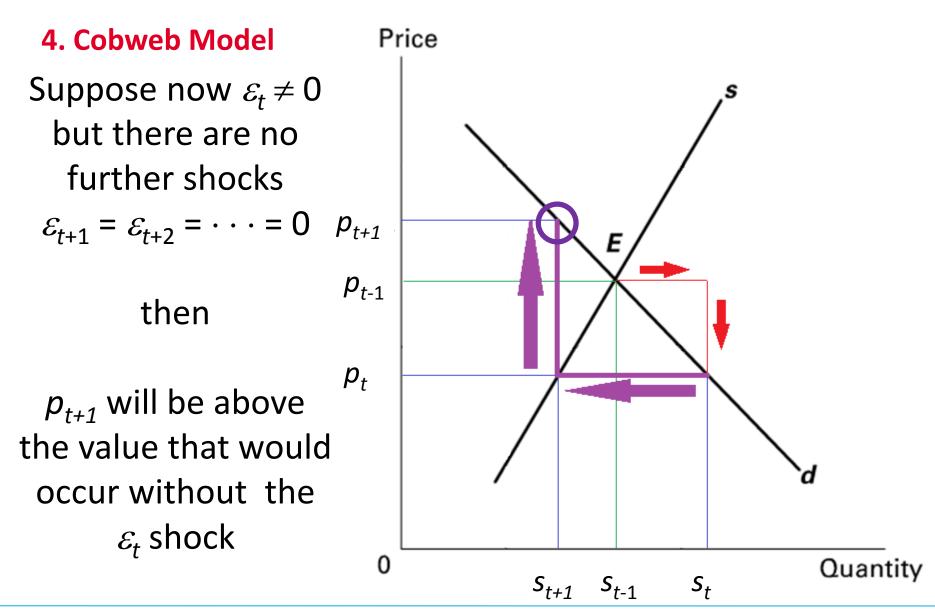
N D NOVA SCHOOL OF BUSINESS & ECONOMICS



N O NOVA SCHOOL OF BUSINESS & ECONOMICS



NOVA SCHOOL OF BUSINESS & ECONOMICS



4. Cobweb Model **Analytically - Impact** of the ε_t shock on prices is given by:

Impact multiplier:

 p_{t+1}

 p_{t-1}

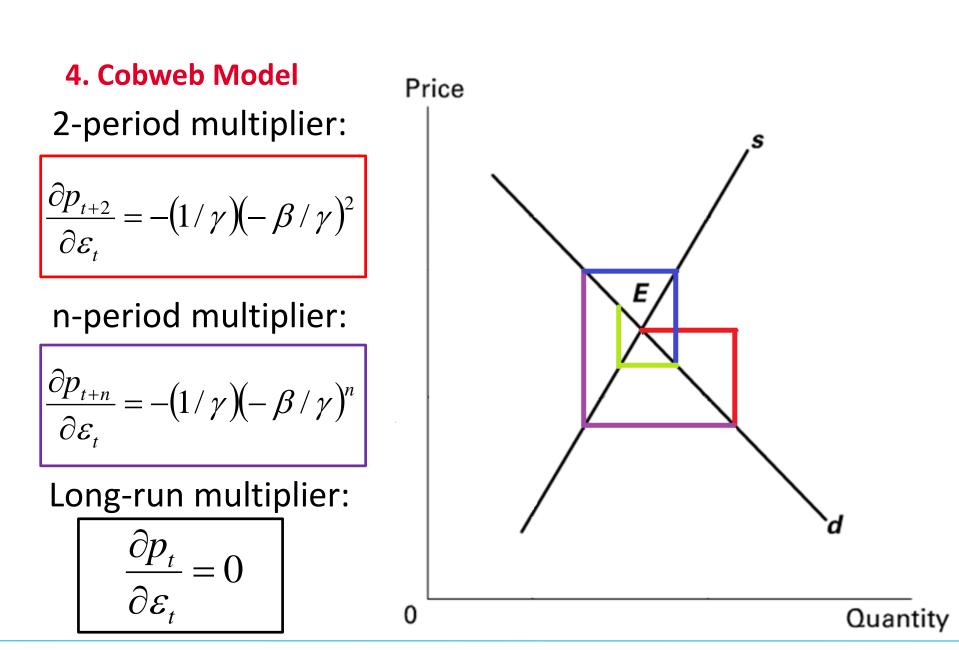
 p_t

0

$$\frac{\partial p_t}{\partial \varepsilon_t} = -1/\gamma$$

1-period multiplier:

$$\frac{\partial p_{t+1}}{\partial \varepsilon_t} = -(1/\gamma)(-\beta/\gamma)$$



N D Nova school of BUSINESS & ECONOMICS

Let's solve the model analytically:

$$\begin{cases} d_t = a - \gamma p_t & \gamma > 0\\ s_t = b + \beta p_t^* + \varepsilon_t & \beta > 0\\ s_t = d_t\\ p_t^* = p_{t-1} & \\ b + \beta p_{t-1} + \varepsilon_t = a - \gamma p_t \end{cases}$$

Let's solve the model analytically:

$$b + \beta p_{t-1} + \varepsilon_t = a - \gamma p_t$$

$$\Rightarrow p_t = (-\beta/\gamma)p_{t-1} + (a - b)/\gamma - \varepsilon_t/\gamma$$

This is a 1st order difference equation:

- Stability condition: $|-\beta/\gamma| < 1 \Leftrightarrow \beta/\gamma < 1$
- Long run equilibrium price (E) without shocks:

$$p=(a-b)/(\gamma+\beta)$$

Let's solve the model analytically:

$$p_t = (-\beta/\gamma)p_{t-1} + (a - b)/\gamma - \varepsilon_t/\gamma$$

Start at time t = 0 assuming that price = p_0 and iterate forward:

$$p_t = \frac{a-b}{\gamma+\beta} - \frac{1}{\gamma} \sum_{i=0}^{t-1} \left(-\frac{\beta}{\gamma}\right)^i \varepsilon_{t-i} + \left(-\frac{\beta}{\gamma}\right)^t \left[p_0 - \frac{a-b}{\gamma+\beta}\right]$$

