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Example: Normal distribution (0,1)
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Example: Normal distribution censored
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Example: Normal distribution truncated
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Sample selection

Sample selection ⇒ the sample we obtain is not representative of the
population of interest.

Example: wealth equation for all families in a country

wealth = β0 + β1plan + β2educ + β3age + β4income + u

1 Random sample → OLS

2 Only people less than 65 years old were sampled → selection on x

What if we use OLS on the selected sample?

3 Only families with wealth greater than zero are sampled→
selection on y

What if we use OLS on the selected sample?
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Sample selection: case 2
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Sample selection: case 3
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Types of sample selection

1 Selection determined by the explanatory variables

1 Missing completely at random

2 Missing at random

3 Missing not at random

2 Selection on the dependent variable

1 Truncated regression

2 Incidental truncation: Heckman selection model
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Linear model with missing data

A population is represented by the random vector (x, y , z)

Consider the identified IV case (generalize OLS):

y = xβ + u

E (z′u) = 0

Random sample

rank E (z′x) = K ⇒ 2SLS to consistently estimate β

Selected sample

Conditions are not usually enough to consistently estimate β
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Linear model with missing data

Each observation i is supplemented by a selection indicator si

si = 1 ⇒ observation i is USED in the estimation

si = 0 ⇒ observation i is NOT USED in the estimation

Our sample consists of {(xi , yi , zi , si ) : i = 1, ...,N}

The IV estimator using the selected sample can be written as

β̂IV =

(
N−1

N∑
i=1

siz′ixi

)−1(
N−1

N∑
i=1

siz′iyi

)

β̂IV is called a complete case estimator
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Linear model with missing data

With a large sample:

plimN→∞(β̂IV ) = β + [E (sz′x)]−1E (sz′u)

Assumptions for consistency:

Rank condition
rank E (z′x|s = 1) = K

Exogeneity or orthogonality condition

E (sz′u) = P(s = 1)E (z′x|s = 1) = 0

When do we achieve these conditions?
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Missing completely at random (MCAR)

MCAR: s is independent of (x, y , z)

Under MCAR

E (sz′u) = E (s)E (z′u) = ρ · 0 = 0

Selection does not affect identifying assumptions ⇒ OLS using the
si = 1 observations is consistent for β
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Missing at random (MAR)

MAR: E (y |x, s) = xβ

With MAR a sufficient condition is

E (y |x, s) = E (y |x) = xβ

s can be an arbitrary function of the exogenous variables.
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Missing not at random (MNAR)

MNAR: previous conditions are not valid

Using MCAR and MAR assumption allow us using the complete case
estimator
Using OLS for the MNAR would lead to biased estimates
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Dealing with MNAR: s correlated with u?

Suppose the population model is

y = xβ + u

E (u|x) = 0
Corr(s, u) ̸= 0

Suppose

1 s is a deterministic function of (x, v) for some variable v

2 (u, v) is independent of x

The conditional mean of y is

E (y |x, v) = xβ + E (u|x, v) = xβ + E (u|v)
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Dealing with MNAR: s correlated with u?

We need to make additional assumptions to identify β!

Suppose v has zero mean and E (u|v) = γv

The conditional mean of y can be written as

E (y |x, v) = xβ + γv

Use OLS of yi on xi , vi using the selected sample (si = 1) to
consistently estimate β and γ

Notice that all variables only need to be observed when si = 1

Intuition: selection is like an omitted variable
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Selection on y: truncated regression

The rule for observing a data point depends in a known
deterministic way on the dependent variable

Setting:

1 Random draw (xi , yi )

2 We only observe the data point if si = 1 for known constants a1 and a2

si = 1[a1 < yi < a2]

Allow for the cases a1 = −∞ and a2 = +∞ to have truncation only in
one side.

OLS on the selected sample ⇒ β is inconsistent because selection is a
function of yi
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Density conditional on s = 1

Assume that the population conditional density is f (y |x;β) where γ is
another set of parameters.

The density conditional on s = 1 is

p(y |x, s = 1) =
f (y |x;β)

P(a1 < y < a2|x)
=

f (y |x;β)
F (a2|x;β)− F (a1|x;β)

MLE → log-likelihood function for the selected subpopulation

N∑
i=1

{log[f (yi |xi ;β)]− log[F (a2|xi ;β)− F (a1|xi ;β)]}
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Truncated normal regression model

Truncated normal regression (or Truncated Tobit) model makes the
following distributional assumption:

D(y |x) = N (xβ, σ2)

As with censoring, truncating the sample is costly

We are interested in E (y |x) = xβ in the entire population

We need to specify all of D(y |x)!

Differs from the censored normal regression model

No information on units not in the subpopulation with a1 < y < a2
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Example: a1 = −∞

Compare the likelihood in the truncation versus censoring cases

Truncated case {
σ−1ϕ[(yi − xiβ)/σ]
Φ[(a2 − xiβ)/σ]

}si

Completely drop all units with si = 0

Censored case

{σ−1ϕ[(yi − xiβ)/σ]}si{1 − Φ[(a2 − xiβ)/σ]}1−si

Uses additional information from the binary selection indicator

If you have a choice, you should use censored regression
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Incidental truncation: self-selection

Sample selection is not a deterministic function of x or y , but it may be
related to them.

Self-selection: y is observed only when a certain event is true.

The event is often a choice of the individual we observe.

Example:

y = log(wo), where wo is the “wage offer”

A person works if the wage offer is larger than reservation wage (w r
i )

wo
i > w r

i

We observe wageo only if the person decides to enter the work force.

We do not observe wageo otherwise.
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Wage offers and incidental truncation

Assume we can model the wage offer and reservation wages as

wo
i = exp(xi1β1 + ui1)

w r
i = exp(xi2β2 + γ2ai + ui2)

Observe wo
i if log(wo

i )− log(w r
i ) > 0 or

xi1β1 + ui1 − xi2β2 − γ2ai − ui2 > 0

or
xiδ2 + vi2 > 0

where xi includes all nonredundant elements of xi1 and xi2 and ai

Simplest example of a structural (econometrics) model
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General model: Type II Tobit Model

A general population model:

y1 = x1β1 + u1

y2 = 1[xδ2 + v2 > 0]

y1 is the response variable (only partially observed)

y2 is the selection indicator (what we called s before)

Assumptions

1 (x, y2) are always observed, y1 is observed only when y2 = 1

2 (u1, v2) is independent of x with u1 having mean zero

3 v2 ∼ N (0, 1)

4 E (u1|v2) = γ1v2
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An estimating equation for β1

Under the previous assumptions

E (y1|x, v2) = x1β1 + E (u1|x, v2)

= x1β1 + E (u1|v2)

= x1β1 + γ1v2

Problem: we observe y2, not v2!

E (y1|x, y2) = E [E (y1|x, v2)|x, y2]

= x1β1 + γ1E (v2|x, y2)

How can we recover E (v2|x, y2)?
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Generalized residual: E (v2|x, y2)

Decompose the term using the two values of y2

E (v2|x, y2) = y2E (v2|x, y2 = 1) + (1 − y2)E (v2|x, y2 = 0)

For the selected sample, notice that

E (v2|x, y2 = 1) = E (v2|x, v2 > −xδ2)

=
ϕ(−xδ2)

1 − Φ(−xδ2)

Reminder: step 2 comes from this property of Normal distribution
(same rule as tobit):

E (z |a < z < b) = µ+
ϕ(a−µ

σ )− ϕ(b−µ
σ )

Φ(b−µ
σ )− Φ(a−µ

σ )
σ
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Heckit method (Heckman 1976)

If we restrict to the selected sample (y2 = 1) we have

E (y1|x, y2 = 1) = x1β1 + γ1E (v2|x, y2 = 1)
= x1β1 + γ1λ(xδ2)

Two-step estimation method

1 Selection equation: probit of yi2 on xi using all of the data

λ̂i2 = λ(xi δ̂2)

2 Regression equation: OLS of yi1 on xi1, λ̂i2 in the selected sample

H0 : γ1 = 0 tests for no sample selection problem

Notice we don’t need an exclusion restriction (like in IV)
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APPLICATION: wage offer for married women
EXAMPLE: Wage O↵er for Married Women

. use mroz

. des lwage inlf nwifeinc

storage display value

variable name type format label variable label

-------------------------------------------------------------------------------

lwage float %9.0g log(wage)

inlf byte %9.0g =1 if in lab frce, 1975

nwifeinc float %9.0g (faminc - wage*hours)/1000

. sum lwage inlf educ kidslt6 nwifeinc

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

lwage | 428 1.190173 .7231978 -2.054164 3.218876

inlf | 753 .5683931 .4956295 0 1

educ | 753 12.28685 2.280246 5 17

kidslt6 | 753 .2377158 .523959 0 3

nwifeinc | 753 20.12896 11.6348 -.0290575 96

74
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APPLICATION: wage equation using OLS

log(wi ) = β0 + β1 · educi + β2 · experi + β3 · expersqi + u

. reg lwage educ exper expersq

Source | SS df MS Number of obs = 428

-------------+------------------------------ F( 3, 424) = 26.29

Model | 35.0222967 3 11.6740989 Prob > F = 0.0000

Residual | 188.305144 424 .444115906 R-squared = 0.1568

-------------+------------------------------ Adj R-squared = 0.1509

Total | 223.327441 427 .523015084 Root MSE = .66642

------------------------------------------------------------------------------

lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

educ | .1074896 .0141465 7.60 0.000 .0796837 .1352956

exper | .0415665 .0131752 3.15 0.002 .0156697 .0674633

expersq | -.0008112 .0003932 -2.06 0.040 -.0015841 -.0000382

_cons | -.5220406 .1986321 -2.63 0.009 -.9124667 -.1316144

------------------------------------------------------------------------------
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APPLICATION: Heckit regression equation

. heckman lwage educ exper expersq, select(inlf = educ exper expersq nwifeinc

age kidslt6 kidsge6) twostep

Heckman selection model -- two-step estimates Number of obs = 753

(regression model with sample selection) Censored obs = 325

Uncensored obs = 428

Wald chi2(6) = 180.10

Prob > chi2 = 0.0000

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lwage |

educ | .1090655 .015523 7.03 0.000 .0786411 .13949

exper | .0438873 .0162611 2.70 0.007 .0120163 .0757584

expersq | -.0008591 .0004389 -1.96 0.050 -.0017194 1.15e-06

_cons | -.5781032 .3050062 -1.90 0.058 -1.175904 .019698

-------------+----------------------------------------------------------------
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APPLICATION: Heckit selection equation

inlf |

educ | .1309047 .0252542 5.18 0.000 .0814074 .180402

exper | .1233476 .0187164 6.59 0.000 .0866641 .1600311

expersq | -.0018871 .0006 -3.15 0.002 -.003063 -.0007111

nwifeinc | -.0120237 .0048398 -2.48 0.013 -.0215096 -.0025378

age | -.0528527 .0084772 -6.23 0.000 -.0694678 -.0362376

kidslt6 | -.8683285 .1185223 -7.33 0.000 -1.100628 -.636029

kidsge6 | .036005 .0434768 0.83 0.408 -.049208 .1212179

_cons | .2700768 .508593 0.53 0.595 -.7267473 1.266901

-------------+----------------------------------------------------------------

mills |

lambda | .0322619 .1336246 0.24 0.809 -.2296376 .2941613

-------------+----------------------------------------------------------------

rho | 0.04861

sigma | .66362875

lambda | .03226186 .1336246

------------------------------------------------------------------------------
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APPLICATION: Heckit selection equation
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APPLICATION: Heckit selection equation
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