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Lecture summary

@ Introduction
© When can sample selection be ignored?
© Selection on the response variable: truncated regression

@ Incidental truncation



Example: Normal distribution (0,1)
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Sample selection

Sample selection = the sample we obtain is not representative of the
population of interest.

o Example: wealth equation for all families in a country

wealth = By + Biplan + PBoeduc + PBzage + Baincome + u

© Random sample — OLS
@ Only people less than 65 years old were sampled — selection on x

e What if we use OLS on the selected sample?

© Only families with wealth greater than zero are sampled—
selection on y

o What if we use OLS on the selected sample?
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Types of sample selection

@ Selection determined by the explanatory variables

@ Missing completely at random
® Missing at random

© Missing not at random

@ Selection on the dependent variable

@ Truncated regression

@ Incidental truncation: Heckman selection model



Linear model with missing data

A population is represented by the random vector (x, y, z)

e Consider the identified IV case (generalize OLS):

y = xB+u
E(Zu) = 0

@ Random sample

o rank E(z'x) = K = 2SLS to consistently estimate 3

o Selected sample

e Conditions are not usually enough to consistently estimate 3
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Linear model with missing data

@ Each observation i is supplemented by a selection indicator s;

e s; = 1 = observation 7 is USED in the estimation

e s; = 0 = observation i is NOT USED in the estimation

Our sample consists of {(x;,y;,zj,si): i=1,...,N}

@ The IV estimator using the selected sample can be written as
N -1 N
-1 -1
By = </V ZSiZf-Xi) (’V > SiZf-y,')
i=1 i=1

By is called a complete case estimator
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Linear model with missing data

o With a large sample:

plimy oo (Biv) = B+ [E(s2X)] 1 E(sZ v)

e Assumptions for consistency:

e Rank condition
rank E(Zx|s=1)=K

e Exogeneity or orthogonality condition

E(sZu) = P(s=1)E(Zx]s=1) =0

@ When do we achieve these conditions?
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Missing completely at random (MCAR)
MCAR: s is independent of (x,y,z)

e Under MCAR
E(sZu) = E(s)E(Zu)=p-0=0

@ Selection does not affect identifying assumptions = OLS using the
s; = 1 observations is consistent for 3
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Missing at random (MAR)
MAR: E(y|x,s) = x3
e With MAR a sufficient condition is
E(y[x,s) = E(y[x) = x5

@ s can be an arbitrary function of the exogenous variables.

41 MAR
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Missing not at random (MNAR)

MNAR: previous conditions are not valid

@ Using MCAR and MAR assumption allow us using the complete case
estimator

@ Using OLS for the MNAR would lead to biased estimates
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Missing not at random (MNAR)

MNAR: previous conditions are not valid

@ Using MCAR and MAR assumption allow us using the complete case
estimator
@ Using OLS for the MNAR would lead to biased estimates
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Missing not at random (MNAR)

MNAR: previous conditions are not valid

@ Using MCAR and MAR assumption allow us using the complete case
estimator

@ Using OLS for the MNAR would lead to biased estimates
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Dealing with MNAR: s correlated with u?

Suppose the population model is

= xB+u

Corr(s,u) # 0

@ Suppose

@ s is a deterministic function of (x, v) for some variable v

@ (u,v) is independent of x
@ The conditional mean of y is

E(y|x,v) =xB+ E(ulx,v) = xB + E(u|v)
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Dealing with MNAR: s correlated with u?

We need to make additional assumptions to identify !

@ Suppose v has zero mean and E(u|v) = yv

@ The conditional mean of y can be written as

E(ylx,v) =x8 +v

@ Use OLS of y; on x;, v; using the selected sample (s; = 1) to
consistently estimate 5 and

o Notice that all variables only need to be observed when s; = 1

o Intuition: selection is like an omitted variable
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Selection on y: truncated regression

The rule for observing a data point depends in a known
deterministic way on the dependent variable

@ Setting:
© Random draw (x;, y;)

© We only observe the data point if s; = 1 for known constants a; and a,
Si = 1[81 <yi < 32]
@ Allow for the cases a3 = —oc and a» = 400 to have truncation only in
one side.
@ OLS on the selected sample = S is inconsistent because selection is a

function of y;
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Density conditional on s =1

Assume that the population conditional density is (y|x; 3) where ~ is
another set of parameters.

@ The density conditional on s =1 is

flyb:8) f(ylx B)

Piyios =1) = 5 =)~ Flaalk B) — Flahc )

@ MLE — log-likelihood function for the selected subpopulation

N
Z{Iog[f(y;|x,-;ﬂ)] — log[F(az|xi; B) — F(alxi; B)]}

i=1
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Truncated normal regression model

Truncated normal regression (or Truncated Tobit) model makes the
following distributional assumption:

D(ylx) = N(x8, %)

@ As with censoring, truncating the sample is costly
o We are interested in E(y|x) = x/ in the entire population
o We need to specify all of D(y|x)!

o Differs from the censored normal regression model

e No information on units not in the subpopulation with a; < y < a»
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Example: a; = —©

Compare the likelihood in the truncation versus censoring cases

o Truncated case

("ot et |

e Completely drop all units with s; =0

@ Censored case

{07 ¢l(yi —xiB)/a1} {1 — ®[(a2 — xiB) /o]}' 7%

e Uses additional information from the binary selection indicator

o If you have a choice, you should use censored regression
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Incidental truncation: self-selection
Sample selection is not a deterministic function of x or y, but it may be
related to them.

@ Self-selection: y is observed only when a certain event is true.

e The event is often a choice of the individual we observe.

e Example:

y = log(w®), where w® is the "wage offer”
o A person works if the wage offer is larger than reservation wage (w/)

wP > wy

o We observe wage® only if the person decides to enter the work force.

e We do not observe wage® otherwise.
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Wage offers and incidental truncation

Assume we can model the wage offer and reservation wages as

]

w? = exp(xj1f1 + ui1)

wi = exp(xp2f2 + Ya; + uj2)
@ Observe w? if log(w?) — log(w!) > 0 or
Xi1f1 + Uit — X282 — y2a; — ujp >0

or
Xj02 + vio >0

where x; includes all nonredundant elements of x;; and x;» and a;

@ Simplest example of a structural (econometrics) model
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General model: Type Il Tobit Model
A general population model:

yi = x1f81+u
Yo = 1[X52 + v > 0]

@ y; is the response variable (only partially observed)

@ y» is the selection indicator (what we called s before)
@ Assumptions

@ (x,y2) are always observed, y; is observed only when y, =1

@ (u1, v2) is independent of x with vy having mean zero
e Vo ~ N(O, 1)
Q E(u1|we) =mwve
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An estimating equation for (;

Under the previous assumptions

E(y1lx,v2) = x161+ E(u1|x, v2)
= x101 + E(u1|w)
= x181+mnwv

@ Problem: we observe y», not w!

E(yl‘x7)/2) = E[E(yl‘xa V2)|X7y2]
x181 + 1 E(v2x, y2)

e How can we recover E(va|x, y2)?
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Generalized residual: E(v|x, y»)

@ Decompose the term using the two values of y»
E(valx,y2) = y2E(valx,y2 = 1) 4+ (1 — y2)E(v2|x,y> = 0)

@ For the selected sample, notice that

E(v2|x,y2 = 1) = E(V2|X, Vo > —X52)
¢(—x0d2)
1 — ®(—xd2)

@ Reminder: step 2 comes from this property of Normal distribution

(same rule as tobit):
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Heckit method (Heckman 1976)

If we restrict to the selected sample (y2 = 1) we have

E(yilx,yo =1) = x1f1+mE(w(x,y2 =1)
= X101+ 71A(xd2)

@ Two-step estimation method

© Selection equation: probit of y;» on x; using all of the data
5\,’2 = )\(X,‘S2)

~

@ Regression equation: OLS of y;; on xj1, Ajz in the selected sample

@ Hp : 71 = 0 tests for no sample selection problem

@ Notice we don't need an exclusion restriction (like in IV)
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APPLICATION: wage offer for married women

. use mroz

. des lwage inlf nwifeinc

storage display value
variable name type format label variable label
lwage float %9.0g log(wage)
inlf byte  %9.0g =1 if in lab frce, 1975
nwifeinc float %9.0g (faminc - wage*hours)/1000

. sum lwage inlf educ kidslt6 nwifeinc

Variable | Obs Mean Std. Dev. Min Max
lwage | 428 1.190173 .7231978 -2.054164  3.218876
inlf | 753 .5683931 .4956295 0 1
educ | 753 12.28685 2.280246 5 17
kidslt6 | 753 .2377158 .523959 0 3
nwifeinc | 753 20.12896 11.6348 -.0290575 96



APPLICATION: wage equation using OLS

log(w;)

= o+ P1-educ; + B2 - exper; + (3 - expersq; + u

. reg lwage educ exper expersq

Source | SS df MS Number of obs = 428
+ F( 3, 424) = 26.29

Model | 35.0222967 3 11.6740989 Prob > F = 0.0000
Residual | 188.305144 424 .444115906 R-squared = 0.1568
+ Adj R-squared = 0.1509

Total | 223.327441 427 .523015084 Root MSE = .66642
lwage | Coef.  Std. Err. t P>|t| [95% Conf. Intervall
educ | .1074896 .0141465 7.60 0.000 .0796837 .1352956
exper | .0415665 .0131752 3.15 0.002 .0156697 .0674633
expersq | -.0008112 .0003932 -2.06 0.040 -.0015841 -.0000382
_cons | -.5220406 .1986321 -2.63 0.009 -.9124667 -.1316144
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APPLICATION: Heckit regression equation

. heckman lwage educ exper expersq, select(inlf
age kidslt6 kidsge6) twostep

= educ exper expersq nwifeinc

Heckman selection model -- two-step estimates  Number of obs = 753
(regression model with sample selection) Censored obs = 325
Uncensored obs = 428
Wald chi2(6) = 180.10
Prob > chi2 = 0.0000
| Coef . Std. Err. z P>|z| [95%, Conf. Interval]

lwage |
educ | .1090655 .015523 7.03  0.000 .0786411 .13949
exper | .0438873 .0162611 2.70 0.007 .0120163 .0757584
expersq | -.0008591 .0004389 -1.96 0.050 -.0017194 1.15e-06
_cons | -.5781032 .3050062 -1.90 0.058 -1.175904 .019698

30



APPLICATION: Heckit selection equation

inlf |
educ | .1309047 .0252542 5.18 0.000 .0814074 .180402
exper | .1233476 .0187164 6.59 0.000 .0866641 .1600311
expersq | .0018871 .0006 -3.15 0.002 -.003063 -.0007111
nwifeinc | .0120237 .0048398 -2.48 0.013 -.0215096 -.0025378
age | .0528527 .0084772 -6.23 0.000 -.0694678 -.0362376
kidslt6 | .8683285 .1185223 -7.33 0.000 -1.100628 -.636029
kidsge6 | .036005 .0434768 0.83 0.408 -.049208 .1212179
_cons | .2700768 .508593 0.53 0.595 -.7267473 1.266901
mills |
lambda | .0322619 .1336246 0.24 0.809 -.2296376 .2941613
rho | 0.04861
sigma | .66362875
lambda | .03226186 .1336246
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APPLICATION: Heckit selection equation

inlf |
educ |  .1309047  .0252542 5.18  0.000 .0814074 . 180402
exper | .1233476 .0187164 6.59 0.000 . 0866641 .1600311
expersq | -.0018871 .0006 -3.15  0.002 -.003063 -.0007111
nwifeinc | -.0120237  .0048398 -2.48 0.013 -.0215096  -.0025378
age | -.0528527  .0084772 -6.23  0.000 -.0694678 -.0362376
kidslt6 | -.8683285 .1185223 -7.33  0.000 -1.100628 -.636029
kidsge6 | .036005  .0434768 0.83 0.408 -.049208 .1212179
_cons |  .2700768 .508593 0.53 0.595 -. 7267473 1.266901
mills |
lambda | .1336246 0.24 0.809 -.2296376 .2941613
rho | 0.04861 Coefficient on the selection term
sigma | .66362875 in the second stage
lambda | .03226186 .1336246
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APPLICATION: Heckit selection equation

inlf |
educ |  .1309047  .0252542 5.18  0.000 .0814074 . 180402
exper |  .1233476 .0187164 6.59 0.000 . 0866641 .1600311
expersq | -.0018871 .0006 -3.15  0.002 -.003063 -.0007111
nwifeinc | -.0120237  .0048398 -2.48 0.013 -.0215096  -.0025378
age | -.0528527  .0084772 -6.23  0.000 -.0694678 -.0362376
kidslt6 | -.8683285 .1185223 -7.33  0.000 -1.100628 -.636029
kidsge6 | .036005  .0434768 0.83 0.408 -.049208 .1212179
_cons |  .2700768 .508593 0.53 0.595 -. 7267473 1.266901
mills |
lambda | .0322619 .1336246 0.24 -.2296376 .2941613
rho | 0.04861 Coefficient on the selection term
sigma | .66362875 in the second stage is not significant
lambda | .03226186 .1336246
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