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Censored versus truncated data

The common problem is data observability
@ Censored data includes the censoring points

@ Truncated data excludes the censoring points

e Examples of data with this problem:
e Earnings
e Hours of work
e Top coding of wealth

e Expenditure on cars (Tobin's example)



Example: Normal distribution (0,1)
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Example: top coding of wealth

@ We are interested in measuring wealth for a certain population

e wealth* denote actual wealth (a continuous variable)

e wealth denote observed wealth

e Example: data are censored at 75k USD
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e This means that we observe wealth = min(75, wealth*)
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Censored regression models

Censored regression models are applied to two kinds of situations:
© Data censoring

© Corner solution outcomes: the variable we would like to explain
piles up at one or two corners.

@ Most empirical applications are actually to the second case

o It happens to values at a corner (often zero).
e Response is continuous over strictly positive values.
e Examples:

e Charitable contributions

o Labor supply

@ Amount of life insurance



General formulation

Consider the case where y > 0 has a corner at zero.

@ Observability of y can be written as

y = max(0,x8 + u) (1)

o x=(1,x2,..., Xk)
e JisKx1

e u is an unobserved error with some continuous distribution

@ If the range of v is unrestricted

e Equation (1) generates a pile up at zero and then continuous strictly
positive outcomes



What can we say about D(y|x) in general?

We want to know about the full distribution of y, not only the observable
part

@ We need to restrict D(u|x) in some way.

o Example:
Med(ulx) =0

e We can pass the median through:

Med(y|x) = Med[max(0,x5 + u)|x]
= max[0, Med(x8 + u|x)]
= max[0,x5 + Med(u|x)]
= max(0,x53)



What about E(y|x)?

Generally, we cannot find E(y|x) without much stronger assumptions.

e Function max(0, z) is a convex function = the line segment between
any two distinct points on the graph of the function lies above the
graph between the two points.

e Convex function = Jensen's inequality

E(y|x) = E[max(0,x8 + u)|x] > max[0,x5 + E(u|x)] = max(0, x3)

@ We can only get a lower bound for E(y|x)

E(ylx) = max(0,x8) = med(y|x)

e This is not sufficient, if we want to learn more about E(y|x) we need
more assumption — Tobit model
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Tobit Model

By far the most popular model for corners at zero

@ Type |: assumes censoring at zero and normality +
homoskedasticity of the error term

y = max(0,x5 + u)
ux ~ N(0,0%)

@ Similarly to probit and logit we need to assume a distribution for the
error term to derive a density for MLE

@ Can be seen as a latent variable model for y*

o Yy =xB+u

e D(y*|x) follows a classical linear model
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Quantities of interest and observability

Our objective is to learn about partial effects %
J

e E(y|x) is not observed because we observe y only if positive

@ Notice that we can write it as

E(y|x) = P(y > 0[x) - E(y[x,y > 0) + P(y = 0|x) - E(y|x,y = 0)
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Quantities of interest and observability

Our objective is to learn about partial effects %
J

e E(y|x) is not observed because we observe y only if positive

@ Notice that we can write it as

E(y|x) = P(y > 0[x) - E(y[x,y > 0) + P(y = 0|x) - E(y|x,y = 0)

e Can we recover these components separately?
@ P(y > 0Jx): probability of y being observed
© E(y|x,y > 0): conditional mean for observable data
© Py =0lx)
Q £(

y|x, ¥ = 0): notice this is equal to zero!
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Recovering P(y > 0|x)
o Compute response probability using u|x ~ N(0, o?):

P(y >0|x) = P(x8+ u>0|x)
= P(u/o > —xB/0|x)
1 0(-xB/0)
= ®(xp/0)

e It follows a probit model with parameter vector 3 /o
@ We already know how to estimate it and obtain partial effects

OP(y > 0|x)

G = (/0)00x3/0)
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Recovering E(y|x,y > 0)

@ Revision from statistics: if z ~ A(0,1) then

E(z|z > ¢) = ¢(c)/[1 — ®(c)]

@ We can write the conditional mean for observable data

E(ylx,y >0) = xB8+ E(ulu > —xp)
= xB+oE(u/olu/o > —xp/0)
e [_elxB/0)
= o [
o [60B/)
addler
= xB+oA(x8/0)

@ \(z) = ¢(z)/®(2) is called the inverse Mills ratio
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Inverse Mills ratio

lim A(z) =0 lim A(z) =00

Z—00 Z——00

Inverse Mill's ratio




Unconditional expectation E(y/|x)

Since we derived all components, we can derive E(y|x)

@ The unconditional expectation is equal to

E(ylx) = P(y=0[x)-0+ P(y > 0[x)E(y|x,y > 0)
= O(xB/0)[xB + oA (xB/0)]
d(xB/o)xB + op(xB/0)

@ Called the unconditional expectation, since we are not conditioning on
y > 0, even though we condition on x
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Partial effects for conditional expectations

@ Partial effects on P(y > 0|x) known from probit

OP(y > 0|x)

B = (5/0)0(x5/0)

@ Partial effects on E(y|x,y > 0) uses d\(c)/dc = —\(c)[c + A(<)]:

OE(y|x,y > 0)

x; = B~ BAXB/o)xB /o + A(xB/7)]

= Bi{l = A(xB/0)[xB/c + A(xB/a)]}
= Bi(xB/o)

e If x; and xj, are two continuous variables, the ratio of partial effects is

Bi/ B
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Partial effects for unconditional expectations

For the unconditional expectation, a generally useful expression is

OE(y|x)  OP(y > 0[x)
e ax; E(y|x,y > 0) + P(y > 0[x)

Oxj

o Applied to the Type 1 Tobit model

OE(y[x)

g = Ox83/0)5; = Ply > 0)5

@ Again j3; is scaled by a function between 0 and 1 which depends
on x

o As P(y > 0|x) — 1 the 3; become close to the actual partial effect.

o If P(y = 0|x) is large, the scale factor is small

OE(y|x,y > 0)
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Estimation of parameters

Suppose we have a random sample from the population

{(xi,yi):i=1,2,...,N}

@ OLS regressions y; on x; using the full sample or the sample with
y; > 0 does not consistently estimate 8 — use MLE

© Density function for zero-values
fF(Ox) = 1= ®(x5/0)

@ Density function for positive values: for y > 0, f(y|x) = f*(y|x),
where y|x ~ N(x8, 0?)

F(ylx,y > 0) L -
yx7y> = e 20
212
1 1 _amey, 1 y—xB
- = —3(F5-) — y—xp
ol o)
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MLE procedure

© Write the density of y
—oi: 1
Flyb) =11 - ‘D(XB/U)]l[y’o][;cb[(y —xB) /o]0
where 1[condition] is 1 if the condition is true, and O otherwise

@ Write the log-likelihood for random draw i

ti(B,0) = 1lyi = 0]log[l — ®(x;3/0)]
+1lyi > 0l{log ¢[(yi —xB)/o] —log(c)}

© Compute optimality conditions to find MLE estimates
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Interpretation of Tobit

Compare the Tobit APEs on E(y|x) to OLS estimates using entire sample
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Goodness-of-fit

Not a single straightforward procedure

© If we focus on E(y|x), a simple metric is the squared correlation
between y; and E(y;|x;)

()//|X Xlﬁ/o- X/B+U¢ XIB/U

@ We can use a sum of squared residuals-type R-squared, comparable to
OLS R-squared.

© We can look at the fit for nonlimit observations

E(yilxi,yi > 0) = x;B + 6A(x:3/5)
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Example: Married Labor Force Participation
(Mroz 1987)

THE SENSITIVITY OF AN EMPIRICAL MODEL OF
MARRIED WOMEN’S HOURS OF WORK TO ECONOMIC
AND STATISTICAL ASSUMPTIONS

By THOoMAS A. MRroZ'

This study undertakes a systematic analysis of several theoretic and statistical assump-
tions used in many empirical models of female labor supply. Using a single data set (PSID
1975 labor supply data) we are able to replicate most of the range of estimated income
and substitution effects found in previous studies in this field. We undertake extensive
specification tests and find that most of this range should be rejected due to statistical and
model misspecifications. The two most important assumptions appear to be (i) the Tobit
assumption used to control for self-selection into the labor force and (ii) exogeneity
assumptions on the wife’s wage rate and her labor market experience. The Tobit models
exaggerate both the income and wage effects. The exogeneity assumptions induce an
upwards bias in the estimated wage effect; the bias due to the exogeneity assumption on
the wife’s labor market experience, however, substantially diminishes when one controls
for self-selection into the labor force through the use of unrestricted generalized Tobit
procedures. An examination of the maintained assumptions in previous studies further
supports these results. These inferences suggest that the small responses to variations in
wage rates and nonwife income found here provide a more accurate description of the
behavioral responses of working married women than those found in most previous studies.



Dataset

. des nwifeinc educ exper expersq age kidslt6 kidsge6

storage display value
variable name type format label variable label
nwifeinc float %9.0g (faminc - wage*hours)/1000
educ byte  %9.0g years of schooling
exper byte  %9.0g actual labor mkt exper
expersq int %9.0g exper”2
age byte %9.0g woman’s age in yrs
kidslt6 byte  %9.0g # kids < 6 years
kidsge6 byte  %9.0g # kids 6-18

. sum nwifeinc educ exper

expersq age kidslt6 kidsge6

Variable | Obs Mean Std. Dev. Min Max
nwifeinc | 753 20.12896 11.6348 -.0290575 96
educ | 753 12.28685 2.280246 5 17
exper | 753 10.63081 8.06913 0 45
expersq | 753 178.0385 249.6308 0 2025
age | 753 42.53785 8.072574 30 60
kidslt6 | 753 .2377158 .523959 0 3
kidsge6 | 753 1.353254 1.319874 0 8
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Probit

. probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Probit regression Number of obs = 753
LR chi2(7) = 227.14

Prob > chi2 = 0.0000

Log likelihood = -401.30219 Pseudo R2 = 0.2206
inlf | Coef. Std. Err. z P>|z| [95% Conf. Intervall
nwifeinc | -.0120237  .0048398 -2.48 0.013 -.0215096  -.0025378
educ | .1309047  .0252542 5.18 0.000 .0814074 .180402

exper | .1233476 .0187164 6.59 0.000 .0866641 .1600311
expersq | -.0018871 .0006 -3.15 0.002 -.003063 -.0007111

age | -.0528527  .0084772 -6.23  0.000 -.0694678 -.0362376

kidslté | -.8683285 .1185223 -7.33 0.000 -1.100628 -.636029
kidsge6 | .036005 .0434768 0.83 0.408 -.049208 .1212179
_cons | .2700768 .508593 0.53 0.595 -.7267473 1.266901




APE after Probit

. margeff

Average partial effects after probit
y = Pr(inlf)

variable | Coef . Std. Err. z P>|z]| [95% Conf. Intervall
nwifeinc | .0036162 .0014414 -2.51 0.012 -.0064413 -.0007911
educ | .0393088 .0071877 5.47 0.000 .0252212 .05633964
exper | .037046 .005131 7.22 0.000 .0269893 .0471026
expersq | .0005675 .0001771 -3.20 0.001 -.0009146 -.0002204
age | .0158917 .0023569 -6.74 0.000 -.020511 -.0112723
kidslt6 | .2441788 .0258995 -9.43 0.000 -.2949409 -.1934167
kidsge6 | .0108274 .0130538 0.83 0.407 -.0147576 .0364124
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Number of hours worked

. sum hours

Variable | Obs

Mean

Std. Dev.

. count if hours ==
325

740.5764

871.3142
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OLS estimates on full sample

reg hours nwifeinc educ exper expersq age kidslté kidsgeb, robust

Linear regression Number of obs = 753
F(7, 745) = 45.81
Prob > F = 0.0000
R-squared = 0.2656
Root MSE = 750.18

| Robust
hours | Coef. Std. Err. t P>t [95% Conf. Intervall]
_____________ F e e m e e e m = = = =
nwifeinc | -3.446636 2.240662 -1.54 0.124 -7.845398 .9521268
educ | 28.76112 13.03905 2.21 0.028 3.163468 54.35878
exper | 65.67251 10.79419 6.08 ©0.000 44.48186 86.86316
expersg | -.7004939 .3720129 -1.88 0.060 -1.430812 .0298245
age | -30.51163 4.244791 -7.19 0.000 -38.84481 -22.17846
kidslté | -442.0899 57.46384 -7.69 0.000 -554.9002 -329.2796
kidsgeé | -32.77923 22.80238 -1.44 0.151 -77.5438 11.98535
_cons | 1330.482 274 .8776 4.84 0.000 790.8556 1870.109



Tobit estimates

. tobit hours nwifeinc educ exper expersq age kidslt6 kidsge6, 11(0)

Tobit regression Number of obs = 753
LR chi2(7) = 271.59
Prob > chi2 = 0.0000
Log likelihood = -3819.0946 Pseudo R2 = 0.0343
hours | Coef.  Std. Err. t P>t [95% Conf. Intervall
nwifeinc | -8.814243  4.459096 -1.98 0.048 -17.56811  -.0603724
educ | 80.64561  21.58322 3.74 0.000 38.27453 123.0167
exper | 131.5643  17.27938 7.61  0.000 97.64231 165.4863
expersq | -1.864158  .5376615 -3.47 0.001 -2.919667  -.8086479
age | -54.40501 7.418496 -7.33 0.000 -68.96862 -39.8414
kidslt6 | -894.0217  111.8779 -7.99  0.000 -1113.655  -674.3887
kidsge6 | -16.218  38.64136 -0.42 0.675 -92.07675 59.64075
_cons | 965.3053  446.4358 2.16 0.031 88.88528 1841.725
/sigma | 1122.022  41.57903 1040.396 1203.647

Obs. summary: 325 left-censored observations at hours<=0

428

uncensored observations
0 right-censored observations



APE after tobit

@ Notice that tobit command in STATA is already reporting

. margins, dydx(*)

Average marginal effects Number of obs = 753
Model VCE : 0IM

Expression : Linear prediction, predict()

dy/dx w.r.t. : nwifeinc educ exper expersq age kidslt6 kidsge6

Delta-method

|
| dy/dx Std. Err. t P>|t| [95% Conf. Intervall
_____________ e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m e m e mmmmm——mm—m =
nwifeinc | -8.814226  4.459089 -1.98 0.048 -17.56808 -.0603706
educ | 80.64541 21.58318 3.74 0.000 38.27441 123.0164
exper | 131.564 17.27935 7.61 0.000 97.64211 165.486
expersq | -1.864153 .5376606 -3.47 0.001 -2.919661 -.8086455
age | -54.40491 7.418483 -7.33 0.000 -68.9685 -39.84133
kidslt6 | -894.0202 111.8777 -7.99 0.000 -1113.653 -674.3875
kidsge6 | -16.21805 38.6413 -0.42 0.675 -92.07668 59.64057
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APE on E[y|x,y > 0] after tobit

@ Closer to OLS estimates

. margins, dydx(*) predict (ystar(®@,.))

Average marginal effects Number of obs = 753
Model VCE : M
Expression : E(hours*|hours>@), predict(ystar(0,.))
dy/dx w.r.t. : nwifeinc educ exper expersq age kidslté kidsge6
| Delta-method
| dy/dx Std. Err. z P>|z]| [95% Conf. Intervall
............. Femmmmmmmmmmmmmmmemmmemmmmmmmmmmmmmmmmmmm mm e mm mm. e mm ===
nwifeinc | -5.188619 2.621409 -1.98 0.048 -10.32649  -.0507514
educ | 47.47306 12.6214 3.76 0.000 22.73558 72.21054
exper | 77.44703 9.99765 7.75 0.000 57.85199 97.04206
expersq | -1.09736 .3155945 -3.48 0.001 -1.715914  -.4788063
age | -32.02622 4.29211 -7.46 0.000 -40.4386 -23.61384
kidslté | -526.2776 64.70619 -8.13 0.000 -653.0994  -399.4558
kidsge6 | -9.546986  22.75224 -0.42  0.675 -54.14056 35.04659



Goodness-of-fit

Compute the squared correlation between y; and E(y,-|x,-)

@ Predict the number of hours and then compute the squared correlation

. predict xbh, xb

. gen hoursh = normal(xbh/_b[/sigmal)*xb + _b[/sigmal*normalden(xbh/_b[/sigmal)

. sum hours hoursh

Variable | Obs Mean Std. Dev. Min Max
hours | 753 740.5764 871.3142 0 4950
hoursh | 753 721.4201 473.6053 3.496456 1993.885
. corr hours hoursh
(obs=753)
| hours  hoursh
hours | 1.0000
hoursh | 0.5237 1.0000
. di .523772
.27426169
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Visualizing results: Tobit

@ Assume for simplicity we want to focus on hours and nwifeinc only
(no other controls)

. tobit hours nwifeinc, 11(0)
Refining starting values:
Grid node 0: log likelihood = -4070.7304

Fitting full model:

Iteration 0: log likelihood = -4070.7304
Iteration 1: log likelihood = -3962.7553
Iteration 2: log likelihood = -3948.8929
Iteration 3: log likelihood = -3948.1309
Iteration 4: log likelihood = -3948.1289
Iteration 5: log likelihood = -3948.1289

Tobit regression Number of obs 753

Uncensored 428

Limits: lower = 0 Left-censored = 325

upper = +inf Right-censored = 0

LR chi2(1) 13.53

Prob > chi2 0.0002

Log likelihood = -3948.1289 Pseudo R2 = 0.0017

| Std t P>|t]| [95% Conf. Interval]

| -17.57587  4.835457 -3.63 0.000 -27.06847 -8.083274

_cons | 665.8369 109.6933 6.07 0.000 450.4954 881.1784
_____________ e e e
var (e.hours) | 1853209 140396.3 1597110 2150375



Visualizing results: OLS on full sample

reg hours nwifeinc

Source

Model
Residual

—_—— 4+ —

753
11.86
0.0006
0.0155
0.0142
865.09

Interval]

SS df MS
8873133.93 1 8873133.93
562036590 751 748384.274
570909724 752 759188.463
Coef Std. Err. t
-9.336214 2.711406 -3.44
928.5047 63.02861 14.73

0.001
0.000

Number of obs
F(1l, 751)
Prob > F
R-squared
Adj R-squared
Root MSE
[95% Conf.
-14.65905
804.7714

-4.013377
1052.238



Visualizing results: OLS on positive values only

reg hours nwifeinc if hours > 0

Source | SS df
_____________ S
Model | 1707248.02 1
Residual | 255603772 426
_____________ oo e e e e e e e e =
Total | 257311020 427

hours | Coef Std. Err
_____________ oo e e e e e e e e e e mmm o=
nwifeinc | -5.970117 3.539268
_cons | 1415.989 76.7738

MS Number of obs = 428
——————————— F(1, 426) = 2.85
1707248.02 Prob > F = 0.0924
600008.854 R-squared = 0.0066
----------- Adj R-squared = 0.0043
602601.92 Root MSE = 774.6

t P>|t] [95% Conf. Interval]

-1.69 0.092 -12.92672 .9864838
18.44 0.000 1265.086 1566.892



Visualizing results: plot the results
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Visualizing results: plot the results
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Visualizing results: plot the results
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Visualizing results: plot the results
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Specification issues in tobit models

@ Let's look at some cases using the tobit model

o Omitted heterogeneity independent of the covariates
e Heteroskedasticity

o Non-normality
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Omitted heterogeneity independent of the
covariates

Conclusions are similar to the binary response case
@ Assume we have g as unobserved heterogeneity
y = max(0,x8 +~q+u)
ul(x,q) ~ N(0,0?%)
glx ~ N(0,7%)

@ If we estimate a standard tobit we are instead assuming

y = max(0,x8 + v)
vi(x) ~ N(0,0%)

@ But notice that v is not distributed A/(0, 02)
39



Specification issues in tobit models

@ Let's look at some cases using the tobit model

o Omitted heterogeneity independent of the covariates
e Heteroskedasticity

o Non-normality
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Heteroskedasticity

Again similar to result for probit

Heteroskedastic Tobit is a good way to extend functional form.

Typically we can assume that

ulx ~ N(0, exp(2xd))

@ Similar to probit, it makes the partial effects on E(y|x,y > 0) and
E(y|x) more difficult to estimate.
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Specification issues in tobit models

@ Let's look at some cases using the tobit model

o Omitted heterogeneity independent of the covariates
e Heteroskedasticity

e Non-normality
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Non-normality

Assume the following model

y = max(0,x5 + u)
ul(x,q) ~ F()
@ The usual Tobit MLE will not consistently estimate 3

e It may yield reasonably close partial effects

e Using a more flexible distribution for D(u|x) might be a good idea, but
one should not only compare estimated coefficients.
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Extention |: two-limit tobit models

@ Focus now on cases in which censoring is at multiple points

Complete

Left censored

Interval censored

Right censored
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Extention |: two-limit tobit models

@ Allow for two censoring points
e These might be logical or institutional constraints.
e Common are corners at 0 and 1 or 0 and 100.

e Example:

e Suppose workers are allowed to contribute at most 15% of their
earnings to a tax-deferred pension plan, and y; is the percentage of
income contributed for worker i, then the corners are at zero and 15

o What would happen if the cap were not there?

e What would happen if it is raised?
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Extention |: two-limit tobit models

@ Let a; < a be the two limit values of y in the population

y* = xB+u, u|x~N(O,U2)

y = a ify"<a
y = yrifaa<y' <a
y = a ify">a

e Endpoint probabilities are
Ply = ailx) =®((a1 —xB)/0)
Ply = ax) = ®(—(a2 —xp)/0).
e Log-likelihood for a random draw i is
log[f (yilxi;0) = 1[yi = a1]log[®((a1 — xi3)/0)]
+1lyi = ao]log[®(—(az2 — xiB)/0)]
+1[ar < yi < a]log[(1/0)d((yi — xiB)/o)]
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Extension |l: interval-coded date

@ Focus now on cases in which data is interval-coded

Complete

Left censored

Interval censored

Right censored
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Extension |l: interval-coded date

@ Interval-coded data or interval-censored data: the response
variable is recorded in intervals, but the underlying variable is
continuous

e For example, rather than asking individuals to report actual annual
income, they report the interval that their income falls into.

@ Let n < rn < ... < ry denote the known interval limits

w = 0 ify<n
w =1 iftn<y<n

w = J ify>r
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Extension |l: interval-coded date

@ Expand the tobit model to have many censoring points

@ The log-likelihood for a random draw i is

ti(B,0) = 1w = 0]log{®[(rn —x;3)/o]}
+1{w; = 1]log{®[(r2 — x;8)/0] — ®[(n — xiB)/0]}
oo+ 1w = J]log{1l — ®[(r; — x;B)/0]}

e The MLE, 5 and 42, are often called interval regression estimators
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