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Can we use linear models when y is not
continuous?

1 y is discrete: numeric variable with countable number of values.

Nominal variables: gender, religious or political affiliation, etc.

Ordinal variables: income levels, school grades, etc.

Discrete interval variables with few values: number of times
married, number of children, etc.

Continuous variables grouped in categories: income grouped into
subsets, blood pressure levels, etc.

2 y is binary: special case with only 2 values

Most common case are dummy variables
Examples: employed/unemployed, high income/low income
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When y is binary

It follows some properties of Bernoulli (zero-one) random variables

E (y |x) = P(y = 1|x) = p(x)

Var(y |x) = p(x)[1− p(x)]

We are therefore interested in modelling conditional probabilities

Correspondent of modelling conditional means (see OLS)

p(x) is often called response probability

A binary variable has natural heteroskedasticity

Conditional variance of y depends on x

Except in the special case where p(x) does not depend on x.
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Binary variables and partial effects

Similar to the linear case, we are interested in how does x causes a
change in the response probability?

1 For continuous xj :
∂p(x)

∂xj

2 For discrete xj : look at changes in the response probability holding
other variables fixed

Example: if xK is a training indicator and y is an employment indicator

p(x1, ..., xK−1, 1)− p(x1, ..., xK−1, 0)

is the effect of training on the employment probability, at given values
for the other covariates.
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Binary variables and partial effects

1 Average partial effect (APE)

Weighted average of the partial effects at each observation

Ex

[
∂p(x)

∂xj

]

More appeal since it averages partial effects for actual units

2 Partial effect at the average (PEA)

Partial effect when xs equal their sample average

Ex

[
∂p(x)

∂xj

]

In nonlinear models, the APE and PEA can be very different!
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How can we estimate response probabilities?

1 Linear probability model (LPM)

This is OLS applied to binary outcome variables

Ease of interpretation: the estimated coefficients give direct
estimates of the effects of each xj on the response probability.

2 Linear index models
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Linear probability model

When y is binary, LPM models the response probability as a function
linear in parameters

y = β1 + β2x2 + ...+ βKxK + u ≡ xβ + u

E (y |x) = P(y = 1|x) = xβ

Because P(y = 1|x) = E (y |x)

If the conditional mean is truly xβ, OLS consistently estimates β

What assumptions required for identification?

Because Var(y |x) = xβ(1− xβ)

Inference for OLS should be made robust to heteroskedasticity

7



Pros and cons of LPM

1 Nothing guarantees fitted values ŷi = xi β̂ are in the unit interval.

2 Difficult to impose diminishing effects of the xj on the p(x)
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How can we estimate response probabilities?

1 Linear probability model (LPM)

This is OLS applied to binary outcome variables

Ease of interpretation: the estimated coefficients give direct
estimates of the effects of each xj on the response probability.

2 Linear index models

Non-linear models designed to model conditional probabilities

Probit / logit models

Notice that these models have this name because they use a linear
index into a non-linear function
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Linear index models

The response probability has the form

P(y = 1|x) = G (xβ)

for some G : R→ (0, 1)

1 xβ is the linear index

2 G (·) is the non-linear function transforming the linear index into a
real number bounded between 0 and 1

In most cases, G (·) is a cumulative distribution function for a
continuous random variable with density g(·)
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Estimating partial effects in linear index models

If xj be continuous, the partial effect equals

∂p(x)

∂xj
= βjg(xβ)

Because g(xβ) > 0, βj gives the direction of the partial effect

For two continous covariates, the ratio of the coefficients give the
ratio of the partial effects, independent of x

∂p(x)/∂xj
∂p(x)/∂xh

=
βjg(xβ)

βhg(xβ)
= βj/βh

No sense to compare magnitudes of coefficients across probit / logit
and LPM because their interpretation is totally different
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Estimating partial effects in linear index models

1 Average partial effect

For a continuous xj : ÂPE j = β̂j

[
N−1∑N

i=1 g(xi β̂)
]

For a discrete xj :
ÂPEK = N−1∑N

i=1[G (xi(K)β̂(K) + β̂K )− G (xi(K)β̂(K))]

2 Partial effect at the average

For a continuous xj : P̂EAj = β̂jg(x̄ β̂)

For a discrete xj : P̂EAK = G (x̄(K)β̂(K) + β̂K )− G (x̄(K)β̂(K))
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Example

Suppose the response probability is equal to

p(z) = G [β0 + β1z1 + β2z
2
1 + β3 log(z2) + β4z3] ≡ G (xβ)

Some examples of partial effects

∂p(z)

∂z1
= (β1 + 2β2z1)g(xβ)

∂p(z)

∂z2
=

β3

z2
g(xβ)

∂ log p(z)

∂ log z2
= β3

g(xβ)

G (xβ)
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How to model discrete variables: probit model

Suppose yi is generated by a linear latent variable model:

y∗i = xiθ + ei

ei |xi ∼ N (0, 1)

yi = 1 if y∗i > 0
= 0 if y∗i ≤ 0

The latent variable y∗i is not observed by the researcher

The assumption of standard-normality of e is fundamental

Used to derive the response probability

Remember that MLE applications always require distributional
assumptions
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Probit model and response probability

Derive the response probability from the latent model assumptions

P(yi = 1|xi ) = P(y∗i > 0|xi )
= P(xiθ + ei > 0|xi )
= P(ei > −xiθ|xi )
= 1− Φ(−xiθ)

= Φ (xiθ)

Φ(z) =
∫ z
−∞ φ(v)dv is the standard normal c.d.f.

φ(v) = (2π)−1/2 exp(−v2/2) is the standard normal p.d.f.
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Probit model and response probability

Completely characterized the conditional distribution of y using a
well-known c.d.f. function

1 Write the conditional density of y

P[y = 1|x] = Φ(xθ)

P[y = 0|x] = 1− Φ(xθ)

f (y |x; θ) = [1− Φ(xθ)](1−y)Φ(xθ)y if y ∈ {0, 1}
= 0 if y /∈ {0, 1}

2 Compute log-likelihood function

`i (θ) = (1− yi ) log[1− Φ(xθ)] + yi log[Φ(xθ)]

3 Apply MLE Derivation of parameters Derivation of asymptotic variance
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Probit versus logit

Used for modelling of the tails of the distribution

Probit

G (z) = Φ(z)

Logit

G (z) =
exp(z)

[1 + exp(z)]
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Goodness of fit

Define a binary predictor for each i

ỹi = 1 if G (xi β̂) ≥ .5
= 0 if G (xi β̂) < .5

Define a correct prediction if yi = ỹi

N0 (N1) is the number of observations with yi = 0 (yi = 1)

N00 (N11) is the number of observations with yi = 0 and ỹi = 0 (ỹi = 1
and yi = 1)

Proportions correctly predicted are a measure of goodness of fit

q0 =
N00

N0
q1 =

N11

N1
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APPLICATION: Married labor force participation
(Mroz 1987)
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Dataset

Focus on the dummy variable for labour force participation

What do you notice about the distribution?

Can you learn something about probit or logit use?

EXAMPLE: Married Women’s Labor Force Participation
• Married women’s labor force participation, using data from Mroz (1987)
• Dependent variable is inlf , “in the labor force.”

. use mroz

. tab inlf

=1 if in |

lab frce, |

1975 | Freq. Percent Cum.

------------+-----------------------------------

0 | 325 43.16 43.16

1 | 428 56.84 100.00

------------+-----------------------------------

Total | 753 100.00

54
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Dataset

. des nwifeinc educ exper expersq age kidslt6 kidsge6

storage display value

variable name type format label variable label

------------------------------------------------------------------------------------------------------

nwifeinc float %9.0g (faminc - wage*hours)/1000

educ byte %9.0g years of schooling

exper byte %9.0g actual labor mkt exper

expersq int %9.0g exper^2

age byte %9.0g woman’s age in yrs

kidslt6 byte %9.0g # kids < 6 years

kidsge6 byte %9.0g # kids 6-18

. sum nwifeinc educ exper expersq age kidslt6 kidsge6

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

nwifeinc | 753 20.12896 11.6348 -.0290575 96

educ | 753 12.28685 2.280246 5 17

exper | 753 10.63081 8.06913 0 45

expersq | 753 178.0385 249.6308 0 2025

age | 753 42.53785 8.072574 30 60

-------------+--------------------------------------------------------

kidslt6 | 753 .2377158 .523959 0 3

kidsge6 | 753 1.353254 1.319874 0 8

55
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LPM with heteroskedasticity

Coefficients give direct estimates of effects on response probability.
These are best interpreted as average partial effects.. * Estimate LPM by OLS.

. reg inlf nwifeinc educ exper expersq age kidslt6 kidsge6, robust

Linear regression Number of obs = 753

F( 7, 745) = 62.48

Prob > F = 0.0000

R-squared = 0.2642

Root MSE = .42713

------------------------------------------------------------------------------

| Robust

inlf | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

nwifeinc | -.0034052 .0015249 -2.23 0.026 -.0063988 -.0004115

educ | .0379953 .007266 5.23 0.000 .023731 .0522596

exper | .0394924 .00581 6.80 0.000 .0280864 .0508983

expersq | -.0005963 .00019 -3.14 0.002 -.0009693 -.0002233

age | -.0160908 .002399 -6.71 0.000 -.0208004 -.0113812

kidslt6 | -.2618105 .0317832 -8.24 0.000 -.3242058 -.1994152

kidsge6 | .0130122 .0135329 0.96 0.337 -.013555 .0395795

_cons | .5855192 .1522599 3.85 0.000 .2866098 .8844287

------------------------------------------------------------------------------

. * Coefficients give direct estimates of effects on response probability.

. * These are best interpreted as average partial effects.

56
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Probit estimates

Probit estimates are much larger in magnitude
But probit parameters are not partial effects!

. probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Probit regression Number of obs = 753

LR chi2(7) = 227.14

Prob > chi2 = 0.0000

Log likelihood = -401.30219 Pseudo R2 = 0.2206

------------------------------------------------------------------------------

inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

nwifeinc | -.0120237 .0048398 -2.48 0.013 -.0215096 -.0025378

educ | .1309047 .0252542 5.18 0.000 .0814074 .180402

exper | .1233476 .0187164 6.59 0.000 .0866641 .1600311

expersq | -.0018871 .0006 -3.15 0.002 -.003063 -.0007111

age | -.0528527 .0084772 -6.23 0.000 -.0694678 -.0362376

kidslt6 | -.8683285 .1185223 -7.33 0.000 -1.100628 -.636029

kidsge6 | .036005 .0434768 0.83 0.408 -.049208 .1212179

_cons | .2700768 .508593 0.53 0.595 -.7267473 1.266901

------------------------------------------------------------------------------

. * The probit estimates are much larger in magnitude, but the probit

. * parameters are not partial effcts.

57
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Partial effects at the average after probit

To interpret coefficient, we need to focus on partial effects. * Compute partial effects at the averages.

. mfx

Marginal effects after probit

y = Pr(inlf) (predict)

= .58154201

------------------------------------------------------------------------------

variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

nwifeinc | -.0046962 .00189 -2.48 0.013 -.008401 -.000991 20.129

educ | .0511287 .00986 5.19 0.000 .031805 .070452 12.2869

exper | .0481771 .00733 6.57 0.000 .033815 .062539 10.6308

expersq | -.0007371 .00023 -3.14 0.002 -.001197 -.000277 178.039

age | -.0206432 .00331 -6.24 0.000 -.027127 -.01416 42.5378

kidslt6 | -.3391514 .04636 -7.32 0.000 -.430012 -.248291 .237716

kidsge6 | .0140628 .01699 0.83 0.408 -.019228 .047353 1.35325

------------------------------------------------------------------------------

58
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Average partial effects after probit

Small differences with partial effects at the average – why?. * Now the APEs. Not meaningful for the experience variables.

. margeff

Average partial effects after probit

y = Pr(inlf)

------------------------------------------------------------------------------

variable | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

nwifeinc | -.0036162 .0014414 -2.51 0.012 -.0064413 -.0007911

educ | .0393088 .0071877 5.47 0.000 .0252212 .0533964

exper | .037046 .005131 7.22 0.000 .0269893 .0471026

expersq | -.0005675 .0001771 -3.20 0.001 -.0009146 -.0002204

age | -.0158917 .0023569 -6.74 0.000 -.020511 -.0112723

kidslt6 | -.2441788 .0258995 -9.43 0.000 -.2949409 -.1934167

kidsge6 | .0108274 .0130538 0.83 0.407 -.0147576 .0364124

------------------------------------------------------------------------------

59
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Logit estimates

. logit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Logistic regression Number of obs = 753

LR chi2(7) = 226.22

Prob > chi2 = 0.0000

Log likelihood = -401.76515 Pseudo R2 = 0.2197

------------------------------------------------------------------------------

inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

nwifeinc | -.0213452 .0084214 -2.53 0.011 -.0378509 -.0048394

educ | .2211704 .0434396 5.09 0.000 .1360303 .3063105

exper | .2058695 .0320569 6.42 0.000 .1430391 .2686999

expersq | -.0031541 .0010161 -3.10 0.002 -.0051456 -.0011626

age | -.0880244 .014573 -6.04 0.000 -.116587 -.0594618

kidslt6 | -1.443354 .2035849 -7.09 0.000 -1.842373 -1.044335

kidsge6 | .0601122 .0747897 0.80 0.422 -.086473 .2066974

_cons | .4254524 .8603696 0.49 0.621 -1.260841 2.111746

------------------------------------------------------------------------------

60
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Average partial effects after logit

Very similar to the ones after probit – why?

. margeff

Average partial effects after logit

y = Pr(inlf)

------------------------------------------------------------------------------

variable | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

nwifeinc | -.0038118 .0014824 -2.57 0.010 -.0067172 -.0009064

educ | .0394323 .0072593 5.43 0.000 .0252044 .0536602

exper | .0367123 .0051289 7.16 0.000 .0266598 .0467648

expersq | -.0005633 .0001774 -3.18 0.001 -.0009109 -.0002156

age | -.0157153 .0023789 -6.61 0.000 -.0203779 -.0110527

kidslt6 | -.240805 .0259425 -9.28 0.000 -.2916515 -.1899585

kidsge6 | .0107335 .0133282 0.81 0.421 -.0153893 .0368564

------------------------------------------------------------------------------

61
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Specification issues in linear index models

There is much confusion about specification issues in probit and logit
because inappropriate parallels are made with linear models

Let’s look at some cases using the probit model

Omitted variable independent of covariates

Heteroskedasticity in the latent variable model

Non-normality in the latent variable model
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Omitted variable independent of covariates

c is an omitted variable independent of x

c|x ∼ N (0, σ2
c )

The underlying latent variable model is

y∗ = xβ + c + e, D(e|x, c) = N (0, 1)

The probit model we estimate is

y∗ = xβ + v , D(v |x) = N (0, 1)

However notice that assumption we make is wrong

D(v |x) = D(c + e|x) = Normal(0, σ2
c + 1)
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Omitted variable independent of covariates

The correct formulation of the response probability is

P(y = 1|x) = Φ[xβ/(1 + σ2
c )1/2]

Using a scaled parameter vector we can write

βc ≡ β/(1 + σ2
c )1/2

P(y = 1|x) = Φ(xβc)

Probit of yi on xi consistently estimates βc , not β

βc is attenuated toward zero (attenuation bias)
This would not happen in a linear model

E (y |x) = xβ + E (c |x) = xβ
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Heteroskedasticity

Allow heteroskedasticity in the error e by assuming, for example,
that the variance of e is a function of the regressor x1

y∗ = xβ + e, D(e|x) = N (0, exp(2x1δ))

Heteroskedasticity changes the response probability

P(y = 1|x) = P(e > −xβ|x)

= P[exp(−x1δ)e > − exp(−x1δ)xβ|x]

= 1− Φ[− exp(−x1δ)xβ] = Φ[exp(−x1δ)xβ]

Probit of yi on xi does not estimate consistently β

β and δ can be estimated using the correct response probability

H0 : δ = 0 is a test for homoskedasticity – why?
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Heteroskedasticity

Notice that partial effects are dependent on heteroskedasticity

The derivatives and changes in P(y = 1|x) are much more
complicated, and need not have the same sign as the relevant
coefficient

For example, if xK is in x1

∂P(y = 1|x)

∂xK
= φ[exp(−x1δ)xβ] ·

{βK exp(−x1δ)− δK exp(−x1δ)xβ}

= φ[exp(−x1δ)xβ] exp(−x1δ){βK − δKxβ}
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Specification issues in linear index models

There is much confusion about specification issues in probit and logit
because inappropriate parallels are made with linear models
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Non-normality

Consider the standard latent variable model

y∗ = xβ + e, D(e|x) = F(·)

F (·) 6= N (0, 1) is the cfd of e

The response probability is therefore equal to

P(y = 1|x) = 1− F (−xβ) 6= Φ(xβ)

Probit MLE is not consistent for β if F (·) 6= Φ(·)
Again we need to compute the correct response probability

Is normality a strong assumption?

36



Extention to discrete variables

We can easily extend the results to multivariate probit or logit models

Cases with two or more binary responses to model

Call them yg , where g = 1, ...,G are individual binary response
variables for each category.

Any combination of zeros and ones is possible

Example: G = 2
y1 indicates when a worker has employer-sponsored health insurance
y2 indicates having an employer-sponsored pension plan
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Extention to discrete variables: multinomial probit

The marginal distributions are assumed to follow probits:

P(yg = 1|x) = Φ(xgβg ), g = 1, ...,G .

Multivariate probit can be obtained from

y∗i1 = xi1β1 + ei1

y∗i2 = xi2β2 + ei2
...

y∗iG = xiGβG + eiG

with ei |xi ∼ Normal(0,W) with unit variances

Estimation is performed with MLE
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EXTRA: probit estimates Back to probit

1 Compute the gradient of `i (θ)

∇θ`i (θ) = −(1− yi )xiφ(xiθ)/[1− Φ(xiθ)] + yixiφ(xiθ)/Φ(xiθ)

= φ(xiθ)xi
−(1− yi )Φ(xiθ) + yi [1− Φ(xiθ)]

Φ(xiθ)[1− Φ(xiθ)]

= φ(xiθ)xi
[yi − Φ(xiθ)]

Φ(xiθ)[1− Φ(xiθ)]

2 Compute the score from the gradient

si (θ) = φ(xiθ)x′i
[yi − Φ(xiθ)]

Φ(xiθ)[1− Φ(xiθ)]

3 Set optimality conditions

E [si (θo)|xi ] = φ(xiθo)x′i
[E (yi |xi )− Φ(xiθo)]

Φ(xiθo)[1− Φ(xiθo)]
= 0
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EXTRA: probit asymptotic variance Back to probit

1 Rewrite optimality conditions as

E [si (θo)|xi ] = [E (yi |xi )− Φ(xiθo)]
φ(xiθo)x′i

Φ(xiθo)[1− Φ(xiθo)]

2 Compute the Hessian

Hi (θ) = ∇θsi (θ) =
−[φ(xiθ)]2x′ixi

Φ(xiθ)[1− Φ(xiθ)]
+ L(xi , θ)[yi − Φ(xiθ)]

where L(xi , θ) is the Jacobian of φ(xiθ)x′i
Φ(xiθ)[1−Φ(xiθ)] .

3 Compute the asymptotic variance estimator

(−E [Hi (θo)|xi ])−1 =

(
N∑
i=1

[φ(xi θ̂)]2x′ixi
Φ(xi θ̂)[1− Φ(xi θ̂)]

)−1
p→ A−1

0
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