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Estimators as closed form solutions

@ In previous topics, all estimators can be written as closed form
functions of the data.

o Observed data = mathematical rule for estimates

e Example: OLS
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o Estimators in closed form do not cover all cases of interest

e CASE 1: we are interested in other conditional moments of y

o CASE 2: the conditional mean of y is a non-linear function



Conditional median instead of conditional mean

CASE 1: we are interested in conditional medians

y = a+XB+u
Med(y|x) = xB=B1+ Boxz + ... + Brxk

@ OLS does not consistently estimate /3; unless we make further
assumptions

e Example: assume D[u|x] is symmetric about zero

Elylx] = med[y|x] = a+xB



OLS vs LAD

Consider a linear population model

y=a+XB+u

@ OLS estimator solves

@ LAD (least absolute deviations) estimator solves
N
min ; —a—x;b
ni Z; % ibl
=

e A solution cannot generally be written in closed form



Minimization functions

The OLS and LAD Objective Functions
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Beyond LAD: quantile regression

Want to know the effect of changing a covariate on features of the
distribution other than the mean

@ Mean effects may mask very different effects in different parts of the
distribution of the outcome variable

o Example: effect of a particular kind of pension plan policy
intervention

o OLS: the effect of the pension plan on the (conditional) mean of total
wealth

o LAD: the effect of the pension plan on the (conditional) median of
total wealth

o Quantile: the effect of the pension plan on the (conditional) quantile
of total wealth



Quantile of a random variable y

Definition

For 0 < 7 < 1, q(7) is the 7t quantile of y; if

Plyi<q(r)] >7and Ply; > q(7)] > 11

@ Assume y; is continuous with strictly increasing cdf = g(7) is a
unique value
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Estimation of quantiles

© Order statistic y(1) < .. < y(n)
@ The 7" quantile g,(y) is given by
qr(y) = arg minsE[p-(y — a)]

where p-(u) = (7 — 1[u < 0])u is the check function

o Example: find the median of y

qos(y) = arg minsE[pos(y — a)
= arg minyE[0.5 — 1[y < a]]



Proof of check function

b
Elor(y — a)] = 7[E(y) — a] - / (v — a)fy (y) dy

— 00

This function is differentiable with

. b
Oy =2 - (a-a@+ [ 60

= FR(a)—r :

This function is increasing and reaches its maximum at g,(y). O




Check function: example 75 percentile

Check Function: tau = .75
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Comparison OLS vs LAD vs quantile

plu)=u(e-u=0))

T

Given a sample {Y1,..., Y5} from a
single distribution F, it can be shown
that:

Sample mean
¥ = argming °,(Y; — €)2

Sample median
Qv (0.5) = arg mi ne > 1Y — ¢l

J

Sample 7th quantile
Qv (r) = argming 32; p-(Yi — €)
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Quantile regression

@ Assume linearity

Let covariates affect quantiles = estimates depend on 7

Quant; (i) = o(r) +5(7)

e «(7) and (7) are obtained by minimizing the check function
N
T\Yi — Q=X = mi —1lyi—a—xi8 <0
mmZp xi) =min > (7 = 1ly; = @ = xi# < 0])

i=1

How to interpret a(7) and 5(7)?
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Quantile regression: an example

Apply quantile regression at different quantiles

— quantile regression q=0.1
- quantile regression q=0.9
— |inear regression (mean)
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Quantile regression: an example

Plot results to compare quantile regression with OLS
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Non-linear least squares (NLS)

CASE 2: the conditional mean of y is a non-linear function

E(ypx) = m(x,6o), x € X

0, is the P x 1 vector of numbers we are trying to learn about

© is the parameter space = set of all parameters values that are
candidates for the population value

@ In error form:

y = m(x,0,)+u
E(ulx) = 0

Analogy principle: use the sample analog of the population problem

N
- 1 o a2
min N 2[% m(x;, 0)]
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M-estimation principle

@ Assume that 0, € © uniquely solves

min Elq(w, 0)]

e w and 0: vector of observable variables and of parameters to estimate
e g: W x © — Ris a real valued function

o Consistency of M-estimator:

N
Nt Z q(w;, 0) % E[q(w, 0)]

0 minimizes 0, minimizes
(sample average) (population average)

@ The solution must be unique:

E{[q(w,60) — q(w,6)]*} >0
forall 6 € ©, 6 # 0,
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Asymptotic distribution: definitions

N -1
VN - 0,) = (Nl > H,-)

© Score is the transpose of the gradient

N
_N*1/2 Z S(W,’, 00)]
i=1

s(w,0) = Vaq(w, )’

where

oq(w,0 oq(w,0 dq(w,0
Voq(w,0) = (20 Qo) .. Oawd))

o Condition E[s;(6,)] = 0 is often referred to as Fisher consistency
@ Hessian is the matrix with second derivatives
H(Wa 0) = VHS(Wa 0)
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Maximum Likelihood (MLE) approach

@ Let's start thinking about an unconditional distribution: population
data are generate by a Normal(jt,0%)? How can we estimate i, o2
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Example of application

@ From empirical distribution to theoretical distribution
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Example of application: normal distribution

@ Start assuming a Normal distribution

MLE fit using GAUSSIAN distribution

35 ;

[ Data

= Gaussian

Probability Density
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Example of application: mixture of three Normal
distributions

@ Use different distributional assumption

35 T T
[ Data
—— Mixture of three Gaussian
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Conditional MLE approach

(xi,y;) denote a random draw from a population

@ Interested in the distribution of y; conditional on x;
D(yi|x)
@ We need to assume a conditional density for y

f(ylx;0),ye Y, xe X,0€0©

o We will allow y; to have any characteristic

e continuous, discrete, or possibly both features
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Conditional MLE estimation

Objective is to maximize the probability of observing the sample as drawn
from the assumed density
N
ma f(yilx;: 0
96@X (Y||X| )

i=1
@ Log-likelihood function: ¢;(0) = log f(y;|x;,0)
@ M-estimation

q(w;,0) = —log f(yi|xi; 0)

@ Estimator of 0, solves mingcg N1 Z,N:l —log f(yi|x;; 6)
® Unique solution (Kullback-Leibler Information Inequality)

Eflog f(yilxi; 05)Ixi] > E[log f(yi|xi; 8)xi], all & € ©
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MLE Testing: Likelihood Ratio Test

Test whether two models are the same
© Unconstrained
@ Constrained: imposes some conditions to the unconstrained model

(example: one parameter is equal to zero)

@ Under correct specification of the density, the LR statistic is:

N N
LR=2(Luy — L) =2 [Z i)~ Zﬁf(g)]

i=1 i=1
o 0 is the unrestricted estimator

e 0 is the estimator with Q restrictions imposed.

o Under Hp, the statistic follows

LR %\
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An example of MLE application

We saw how to apply conditional MLE, now let's do a step back and apply
unconditional MLE

@ Unconditional MLE is a simpler version

e you do not condition on control variables x

e Assume y ~ Normal(u,o?)
2]—1/2 [y — M]z}

exp{— 52

f(ylp, o) = [2m0

@ Can we use MLE to estimate these parameters and their
variance-covariance matrix?
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An example of MLE application: procedure

@ Compute log-likelihood function

2
i(0) = —% log [270?] — [yzazu]

© Solve minimization problem where 6 = (u, 0?)

N
min — N1 ZZ,-(G)
i=1

0cO

® Compute first order conditions to find estimates — how many?

® Compute second derivatives to compute standard errors
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An example of MLE application

o Estimated result and comparison with data generating process
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An example of MLE application

o Estimated result and comparison with data generating process

MLE Estimation of Normal distribution

Normal
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An example of MLE application

o Estimated result and comparison with data generating process

MLE Estimation of Normal distribution

Normal
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An example of MLE application

@ Imagine now a larger sample of y; , i = 1,.., 100000
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An example of MLE application

@ Imagine now a larger sample of y; , i = 1,..,100000

Density
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An example of MLE application

@ Imagine now a larger sample of y; , i = 1,..,100000

MLE Estimation of Normal distribution

Normal
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An example of MLE application

@ Imagine now a larger sample of y; , i = 1,..,100000

MLE Estimation of Normal distribution

Normal
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OLS - MLE comparison

Assume simple model with 1 regressor and two parameters (o and 3)

y=a+xB+u

@ OLS: no need to assume a distribution
@ MLE: assume a distribution
o Example: u ~ Normal(0,0?)

—a—xB-0]?
202

4;(0) = —% log [27m0?] — I

e Apply M-estimation to find « and 3
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EXTRA: Asymptotic distribution for NLS

@ By the mean value theorem (for each element m of the score)

N
Zsm(wn Zsm WI> (Z VGSm Wla m ) (é - 00)
i=1

where 6, is on the line segment between § and 6,

@ Stack all P elements to get

1/2

e By multiplying by N=%/< and applying Fisher consistency

N N
N—1/2 ZS(W,‘, 90) + (N_l Z H,) \/N(é\ — 90)
i=1 i=1



Asymptotic distribution

N _
\/N(QA — 90) = (N_l Z H,>
i=1

@ By the central limit theorem

N
_N—1/2 Z S(W,’, 00)]
i=1

1/22 s(wj, 6 —> Normal(0, B,)

B, = Var[s(w,-7 05)] = E[s(w;, 85)s(w;, 0,)']

o We can then write the asymptotic distribution of the estimator 0

VN = 0,) % Normal(0, A7 'BoAZL).

e Does this remind you of something?
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