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Estimators as closed form solutions

In previous topics, all estimators can be written as closed form
functions of the data.

Observed data ⇒ mathematical rule for estimates

Example: OLS

β̂OLS =

(
N∑
i=1

x′ixi

)−1( N∑
i=1

x′iyi

)

Estimators in closed form do not cover all cases of interest

CASE 1: we are interested in other conditional moments of y

CASE 2: the conditional mean of y is a non-linear function
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Conditional median instead of conditional mean

CASE 1: we are interested in conditional medians

y = α+ Xβ + u

Med(y |x) = xβ = β1 + β2x2 + ...+ βKxK

OLS does not consistently estimate βj unless we make further
assumptions

Example: assume D[u|x ] is symmetric about zero

E [y |x ] = med [y |x ] = α+ xβ
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OLS vs LAD

Consider a linear population model

y = α+ Xβ + u

1 OLS estimator solves

min
a,b

N∑
i=1

(yi − a− xib)2

2 LAD (least absolute deviations) estimator solves

min
a,b

N∑
i=1

|yi − a− xib|

A solution cannot generally be written in closed form
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Minimization functions

OLS

LAD
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The OLS and LAD Objective Functions

)With a large random sample, when should we expect the slope
estimates to be similar? Two important cases.
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Beyond LAD: quantile regression

Want to know the effect of changing a covariate on features of the
distribution other than the mean

Mean effects may mask very different effects in different parts of the
distribution of the outcome variable

Example: effect of a particular kind of pension plan policy
intervention

OLS: the effect of the pension plan on the (conditional) mean of total
wealth

LAD: the effect of the pension plan on the (conditional) median of
total wealth

Quantile: the effect of the pension plan on the (conditional) quantile
of total wealth
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Quantile of a random variable y

Definition
For 0 < τ < 1, q(τ) is the τ th quantile of yi if

P[yi ≤ q(τ)] ≥ τ and P[yi ≥ q(τ)] ≥ 1 − τ

Assume yi is continuous with strictly increasing cdf ⇒ q(τ) is a
unique value
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Estimation of quantiles

1 Order statistic y(1) < .. < y(n)

2 The τ th quantile qτ (y) is given by

qτ (y) = arg minaE [ρτ (y − a)]

where ρτ (u) = (τ − 1[u < 0])u is the check function

Example: find the median of y

q0.5(y) = arg minaE [ρ0.5(y − a)]

= arg minaE [0.5 − 1[y < a]]
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Proof of check function

Check function.

E [ρτ (y − a)] = τ [E (y)− a]−
∫ b

−∞
(y − a)fy (y) dy

This function is differentiable with

∂E [ρτ (y − a)]

∂a
= −τ − (a− a)fy (a) +

∫ b

−∞
fy (y) dy

= Fy (a)− τ

This function is increasing and reaches its maximum at qτ (y).
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Check function: example 75th percentile
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Comparison OLS vs LAD vs quantile
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Quantile regression

Assume linearity

Let covariates affect quantiles ⇒ estimates depend on τ

Quantτ (yi |xi ) = α(τ) + xiβ(τ)

α(τ) and β(τ) are obtained by minimizing the check function

min
α,β

N∑
i=1

ρτ (yi − α− xiβ) = min
α,β

N∑
i=1

(τ − 1[yi − α− xiβ < 0])

How to interpret α(τ) and β(τ)?
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Quantile regression: an example

Apply quantile regression at different quantiles
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Quantile regression: an example

Plot results to compare quantile regression with OLS
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Non-linear least squares (NLS)

CASE 2: the conditional mean of y is a non-linear function

E (y |x) = m(x, θo), x ∈ X

θo is the P × 1 vector of numbers we are trying to learn about
Θ is the parameter space ⇒ set of all parameters values that are
candidates for the population value

In error form:

y = m(x, θo) + u

E (u|x) = 0

Analogy principle: use the sample analog of the population problem

min
θ∈Θ

N−1
N∑
i=1

[yi −m(xi , θ)]2
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M-estimation principle

Assume that θo ∈ Θ uniquely solves

min
θ∈Θ

E [q(w, θ)]

w and θ: vector of observable variables and of parameters to estimate
q : W ×Θ → R is a real valued function

Consistency of M-estimator:

N−1
N∑
i=1

q(wi , θ)
p→ E [q(w, θ)]

θ̂ minimizes
(sample average)

θo minimizes
(population average)

The solution must be unique:

E{[q(w, θ0)− q(w, θ)]2} > 0

for all θ ∈ Θ, θ ̸= θo
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Asymptotic distribution: definitions

√
N(θ̂ − θo) =

(
N−1

N∑
i=1

Ḧi

)−1 [
−N−1/2

N∑
i=1

s(wi , θo)

]
1 Score is the transpose of the gradient

s(w, θ) = ∇θq(w, θ)′

where
∇θq(w, θ) =

(
∂q(w,θ)
∂θ1

∂q(w,θ)
∂θ2

· · · ∂q(w,θ)
∂θP

)
Condition E [si (θo)] = 0 is often referred to as Fisher consistency

2 Hessian is the matrix with second derivatives

H(w, θ) = ∇θs(w, θ)
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Maximum Likelihood (MLE) approach

Let’s start thinking about an unconditional distribution: population
data are generate by a Normal(µ, σ2)? How can we estimate µ, σ2
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Example of application

From empirical distribution to theoretical distribution
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Example of application: normal distribution

Start assuming a Normal distribution
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Example of application: mixture of three Normal
distributions

Use different distributional assumption
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Conditional MLE approach

(xi , yi ) denote a random draw from a population

Interested in the distribution of yi conditional on xi

D(yi |xi )

We need to assume a conditional density for y

f (y|x; θ), y ∈ Y, x ∈ X , θ ∈ Θ

We will allow yi to have any characteristic

continuous, discrete, or possibly both features
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Conditional MLE estimation

Objective is to maximize the probability of observing the sample as drawn
from the assumed density

max
θ∈Θ

N∏
i=1

f (yi|xi; θ)

1 Log-likelihood function: ℓi (θ) ≡ log f (yi |xi , θ)

2 M-estimation
q(wi , θ) = − log f (yi |xi ; θ)

1 Estimator of θo solves minθ∈Θ N−1∑N
i=1 − log f (yi |xi ; θ)

2 Unique solution (Kullback-Leibler Information Inequality)

E [log f (yi |xi ; θo)|xi ] ≥ E [log f (yi |xi ; θ)|xi ], all θ ∈ Θ
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MLE Testing: Likelihood Ratio Test

Test whether two models are the same

1 Unconstrained

2 Constrained: imposes some conditions to the unconstrained model
(example: one parameter is equal to zero)

Under correct specification of the density, the LR statistic is:

LR = 2(Lur − Lr ) = 2

[
N∑
i=1

ℓi (θ̂)−
N∑
i=1

ℓi (~θ)

]

θ̂ is the unrestricted estimator
~θ is the estimator with Q restrictions imposed.

Under H0, the statistic follows

LR
d→ χ2

Q
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An example of MLE application

We saw how to apply conditional MLE, now let’s do a step back and apply
unconditional MLE

Unconditional MLE is a simpler version

you do not condition on control variables x

Assume y ∼ Normal(µ, σ2)

f (y |µ, σ) = [2πσ2]−1/2 exp{− [y − µ]2

2σ2 }

Can we use MLE to estimate these parameters and their
variance-covariance matrix?
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An example of MLE application: procedure

1 Compute log-likelihood function

ℓi (θ) ≡ −1
2
log [2πσ2]− [y − µ]2

2σ2

2 Solve minimization problem where θ = (µ, σ2)

min
θ∈Θ

− N−1
N∑
i=1

ℓi (θ)

1 Compute first order conditions to find estimates – how many?

2 Compute second derivatives to compute standard errors
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An example of MLE application

Estimated result and comparison with data generating process
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An example of MLE application

Estimated result and comparison with data generating process
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An example of MLE application

Imagine now a larger sample of yi , i = 1, .., 100000
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OLS - MLE comparison

Assume simple model with 1 regressor and two parameters (α and β)

y = α+ xβ + u

1 OLS: no need to assume a distribution

2 MLE: assume a distribution

Example: u ∼ Normal(0, σ2)

ℓi (θ) ≡ −1
2
log [2πσ2]− [y − α− xβ − 0]2

2σ2

Apply M-estimation to find α and β
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EXTRA: Asymptotic distribution for NLS

By the mean value theorem (for each element m of the score)

N∑
i=1

sm(wi , θ̂) =
N∑
i=1

sm(wi , θo) +

(
N∑
i=1

∇θsm(wi , θ̈m)

)
(θ̂ − θo)

where θ̈m is on the line segment between θ̂ and θo

Stack all P elements to get

N∑
i=1

s(wi , θ̂) =
N∑
i=1

s(wi , θo) +

(
N∑
i=1

Ḧi

)
(θ̂ − θo)

By multiplying by N−1/2 and applying Fisher consistency

0 = N−1/2
N∑
i=1

s(wi , θo) +

(
N−1

N∑
i=1

Ḧi

)
√
N(θ̂ − θo)
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Asymptotic distribution

√
N(θ̂ − θo) =

(
N−1

N∑
i=1

Ḧi

)−1 [
−N−1/2

N∑
i=1

s(wi , θo)

]
By the central limit theorem

N−1/2
N∑
i=1

s(wi , θo)
d→ Normal(0,Bo)

Bo = Var [s(wi , θo)] = E [s(wi , θo)s(wi , θo)
′]

We can then write the asymptotic distribution of the estimator θ̂
√
N(θ̂ − θo)

d→ Normal(0,A−1
o BoA−1

o ).

Does this remind you of something?
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