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Summary of today’s class

1 Panel data setup

2 Assumptions needed in panel data models

3 Estimation methods and interpretation

1 Pooled OLS (POLS)

2 Fixed Effects (FE)

3 First Differencing (FD)

4 Random Effects (RE)

4 Applications
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From cross section to panel data
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Random sampling with panel data

Random sampling across i with fixed time periods T

{(xit , yit) : t = 1, ...,T}

Two cases:

1 Panel is balanced: each individual i is observed in all periods T

We will assume this case for this topic

2 Panel is unbalanced: don’t observe some i for some of the periods t

Trickier because we must know why we are missing some time periods
for some units

Selection models later on in the course
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General specification

yit = ziδ + witγ + gtθ + vit

zi ⇒ set of time-constant observed variables

wit ⇒ set of time-varying observed variables

gt ⇒ vector of aggregate time effects

Common feature: decomposition of the error term

vit = ci + uit

1 ci ⇒ time-invariant unobservable characteristics

2 uit ⇒ idiosyncratic errors
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Aggregate time effects

Time effects remove trends in yit and wit (focus on residual variation)

How to choose time effects?

Depends on how much residual variation you want to use ⇒ allow for
variation within each time group

Example: assume wit varies daily over 10 years ⇒ create some
variables capturing time and space

timet ⇒ measure the time t continuously (each year is 1 unit)

yeart ⇒ measure the year of t

dj,t ⇒ dummy equal to 1 if time t belongs to year j

daysj,t ⇒ dummy equal to 1 if time t belongs to group j in which days
are groups of 3 days

regi ⇒ dummy equal to 1 if the region of the respondent is region 1, 0
otherwise
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Aggregate time effects – an example

no time effects ⇒ yit = witγ + vit
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Aggregate time effects – an example

linear trend in time ⇒ yit = witγ + θ1timet + vit
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Aggregate time effects – an example

quadratic trend in time ⇒ yit = witγ + θ1timet + θ2time2
t + vit
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Aggregate time effects – an example

cubic trend in time ⇒ yit = witγ + θ1timet + θ2time2
t + θ3time3

t + vit
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Aggregate time effects – an example

linear trend in year ⇒ yit = witγ + θ1yeart + vit

6



Aggregate time effects – an example

quadratic trend in year ⇒ yit = witγ + θ1yeart + θ2year
2
t + vit
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Aggregate time effects – an example

cubic trend in year ⇒ yit = witγ + θ1yeart + θ2year
2
t + θ3year

3
t + vit

6



Aggregate time effects – an example

non-linear trend in year ⇒ yit = witγ +
10∑

j=2

θjdj ,t + vit
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Aggregate time effects – an example

(local) non-linear trend in year ⇒ yit = witγ +
10∑

j=2

θjdj ,t · regi + vit
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Aggregate time effects – an example

non-linear trend in group of days ⇒ yit = witγ +
10∑

j=2

θjdaysj ,t + vit
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Consequences of decomposing the error term

Correlation structure of the error term: vit is almost certainly
serially correlated

corr(vi ,t , vi ,t−1) = corr(ci + ui ,t , ci + ui ,t−1)

= σ2
c + corr(ci , ui ,t−1) + corr(ci , ui ,t)

+corr(ui ,t , ui ,t−1)

We require two types of assumptions concerning errors:

1 relationship between covariates and ci

2 relationship between covariates and uit
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Relationship between covariates and ci

1 Fixed effect: no restrictions on the relationship between ci and xit

2 Random effect:

Cov(xit , ci ) = 0, t = 1, ...,T

3 Correlated random effects: we model the relationship between ci
and xit
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Relationship between covariates and uit

1 Contemporaneous exogeneity

E (uit |xit , ci ) = 0

2 Strict exogeneity

E (uit |xi1, ..., xiT , ci ) = 0

3 Sequential exogeneity

E (uit |xit , xi ,t−1, ..., xi1, ci ) = 0
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Estimation

Consider the simple model:

yit = xitβ + vit

vit = ci + uit

1 Pooled OLS (POLS)

2 Fixed Effects (FE)

3 First Differencing (FD)

4 Random Effects (RE)
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Pooled OLS (POLS)

Same as OLS but with stacked observations

Consistency ensured by

1 Rank condition

2 Orthogonality: E (x′itvit) = 0

E (x′itci ) = 0
Contemporaneous exogeneity: E (x′ituit) = 0, t = 1, ...,T

Decomposition of error term ⇒ inference robust to serial correlation
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Estimation

Consider the simple model:

yit = xitβ + vit

vit = ci + uit

1 Pooled OLS (POLS)

2 Fixed Effects (FE)

3 First Differencing (FD)

4 Random Effects (RE)
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Fixed Effects (FE)

Obtain FE estimator in 2 steps:

1 Between equation (ȳi): average the equation across t →
cross-section

ȳi ≡
∑T

t=1 yit
T

=

∑T
t=1 xitβ + ci + uit

T

= x̄iβ + ci + ūi

2 Within equation (ÿit): subtract the between equation from the
original equation to eliminate ci

ÿit ≡ (yit − ȳi ) = (xit − x̄i )β + uit − ūi

= ẍitβ + üit
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Fixed Effects (FE)

FE estimator uses pooled OLS for ÿit = ẍitβ + üit

β̂FE =

(
N∑

i=1

T∑

t=1

ẍ′it ẍit

)−1( N∑

i=1

T∑

t=1

ẍ′it ÿit

)

Conditions for identification

1 Orthogonality: E (ẍ′it üit) = 0, t=1,...,T

2 Rank: rank E (ẍ′it ẍit) = K

Condition is violated if xit has elements that:

do not vary over time

change over time in the same way → ẍit transformation introduces
constant terms
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FE and orthogonality

The key condition for consistency is

E (ẍ′it üit) = E (ẍ′ituit) = E [(xit − x̄i )′uit ] = 0

The first step is possible because ūi is equal to 0

Includes the following conditions:

E (x′ituit) = 0

E (x̄′iuit) = E

[(∑T
s=1 xis
T

)′

uit

]
=

∑T
s=1 E (x

′
isuit)

T
= 0

Strict exogeneity!
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EXAMPLE: union status and wages

Impact of being in the union on log-wages using different panels for US

Two approaches:

1 POLS: yi = α+ γunioni + xiβ + vi

2 FE: yit = α+ γunioni,t + xitβ + ci + uit

Compare estimates – what do we learn?

Dep. variable: Log-wage
Dataset POLS FE
Union status in ...

May CPS, 1974–75 0.19 0.09
LSYM, 1970–78 0.28 0.19
Michigan PSID, 1970–79 0.23 0.14

Note. Adapted from Freeman (1984), “Longitudinal Analyses of the Effects of Trade Union,” Journal of
Labor Economics Vol. 2, No. 1, pp. 1-26. Estimates are calculated using the surveys listed at left. The
cross-section estimates include controls for demographic and human capital variables.
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APPLICATION: market concentration and airfares

Measure the impact of market concentration on airfares

N = 1, 149 U.S. air routes and the years 1997 through 2000

yit is log(fareit) and the key explanatory variable is concenit , the
concentration ratio for route i .

Other covariates are year dummies and the time-constant variables
log(disti ) and [log(disti )]

2.

Note that what we call ci Stata refers to as u_i.
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Dataset

. use airfare

. tab year

1997, 1998, |

1999, 2000 | Freq. Percent Cum.

------------+-----------------------------------

1997 | 1,149 25.00 25.00

1998 | 1,149 25.00 50.00

1999 | 1,149 25.00 75.00

2000 | 1,149 25.00 100.00

------------+-----------------------------------

Total | 4,596 100.00

. sum fare concen dist

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

fare | 4596 178.7968 74.88151 37 522

concen | 4596 .6101149 .196435 .1605 1

dist | 4596 989.745 611.8315 95 2724

88
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POLS estimates (with “wrong” standard errors)

. reg lfare concen ldist ldistsq y98 y99 y00

Source | SS df MS Number of obs = 4596

-------------+------------------------------ F( 6, 4589) = 523.18

Model | 355.453858 6 59.2423096 Prob > F = 0.0000

Residual | 519.640516 4589 .113236112 R-squared = 0.4062

-------------+------------------------------ Adj R-squared = 0.4054

Total | 875.094374 4595 .190444913 Root MSE = .33651

------------------------------------------------------------------------------

lfare | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

concen | .3601203 .0300691 11.98 0.000 .3011705 .4190702

ldist | -.9016004 .128273 -7.03 0.000 -1.153077 -.6501235

ldistsq | .1030196 .0097255 10.59 0.000 .0839529 .1220863

y98 | .0211244 .0140419 1.50 0.133 -.0064046 .0486533

y99 | .0378496 .0140413 2.70 0.007 .010322 .0653772

y00 | .09987 .0140432 7.11 0.000 .0723385 .1274015

_cons | 6.209258 .4206247 14.76 0.000 5.384631 7.033884

------------------------------------------------------------------------------

89
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POLS estimates (with serial correlation)

. reg lfare concen ldist ldistsq y98 y99 y00, cluster(id)

(Std. Err. adjusted for 1149 clusters in id)

------------------------------------------------------------------------------

| Robust

lfare | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

concen | .3601203 .058556 6.15 0.000 .2452315 .4750092

ldist | -.9016004 .2719464 -3.32 0.001 -1.435168 -.3680328

ldistsq | .1030196 .0201602 5.11 0.000 .0634647 .1425745

y98 | .0211244 .0041474 5.09 0.000 .0129871 .0292617

y99 | .0378496 .0051795 7.31 0.000 .0276872 .048012

y00 | .09987 .0056469 17.69 0.000 .0887906 .1109493

_cons | 6.209258 .9117551 6.81 0.000 4.420364 7.998151

------------------------------------------------------------------------------

90
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FE estimates

. xtreg lfare concen ldist ldistsq y98 y99 y00, fe cluster(id)

(Std. Err. adjusted for 1149 clusters in id)

------------------------------------------------------------------------------

| Robust

lfare | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

concen | .168859 .0494587 3.41 0.001 .0718194 .2658985

ldist | (dropped)

ldistsq | (dropped)

y98 | .0228328 .004163 5.48 0.000 .0146649 .0310007

y99 | .0363819 .0051275 7.10 0.000 .0263215 .0464422

y00 | .0977717 .0055054 17.76 0.000 .0869698 .1085735

_cons | 4.953331 .0296765 166.91 0.000 4.895104 5.011557

-------------+----------------------------------------------------------------

sigma_u | .43389176

sigma_e | .10651186

rho | .94316439 (fraction of variance due to u_i)

------------------------------------------------------------------------------

96
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FE estimates: non-linear effects

Let the effect of concen depend on route distance.
. * Let the effect of concen depend on route distance.

. sum ldist if y00

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

ldist | 1149 6.696482 .6595331 4.553877 7.909857

. gen ldistconcen = (ldist - 6.7)*concen

99
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FE estimates: non-linear effects

. xtreg lfare concen ldistconcen y98 y99 y00, fe cluster(id)

Fixed-effects (within) regression Number of obs = 4596

Group variable: id Number of groups = 1149

(Std. Err. adjusted for 1149 clusters in id)

------------------------------------------------------------------------------

| Robust

lfare | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

concen | .1652538 .0482782 3.42 0.001 .0705304 .2599771

ldistconcen | -.2498619 .0828545 -3.02 0.003 -.4124251 -.0872987

y98 | .0230874 .0041459 5.57 0.000 .014953 .0312218

y99 | .0355923 .0051452 6.92 0.000 .0254972 .0456874

y00 | .0975745 .0054655 17.85 0.000 .0868511 .1082979

_cons | 4.93797 .0317998 155.28 0.000 4.875578 5.000362

-------------+----------------------------------------------------------------

sigma_u | .50598296

sigma_e | .10605257

rho | .95791776 (fraction of variance due to u_i)

------------------------------------------------------------------------------

100
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From FE to TWFE

Many applications of FE models use Two Way Fixed Effects (TWFE)

Consider this example:

yit = αdit + τt + ci + uit

dit is the time-varying variable of interest

τt and ci are the time-specific FE and the individual-specific FE

τt and ci can also be captured by adding indicator variables for each
period and individual

Replicates FE but with ↑ computation (many parameters to estimate)
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APPLICATION: the costs of low birth weight

How can we identify the causal impact of low birth weight?

Cross-sectional regression would fail orthogonality

hi = α+ βbwi + Xiγ + ϵi

bwi is birth weight of child i
hi is an indicator of health

We cannot use panel data since you are born only once

Can we use panel data methods applied to non-panel data?

Almond et al. QJE (2005) ⇒ effect of birth weight on child health
applying FE estimator to non-panel data – how?
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Twins to identify the causal effect (Almond et al.
QJE 2005)

Standard identification problem:
II.A. Parameter of Interest

Let

(1) hij ! ! " bwij" " X#i$ " ai " εij,

where hij is the underlying health of newborn j for mother i, bwij is
birth weight, Xi is a vector of mother-specific observable determi-
nants of health (e.g., race, age, education), ai reflects mother-specific
unobservable determinants of health (e.g., genetic factors), and εij
represents other newborn-specific idiosyncratic factors, assumed to
be independent of all observable and unobservable factors.

The central parameter of interest is ", and its magnitude is
important for policy purposes. If it is large and positive, it suggests
substantial benefits to interventions that raise birth weights. Esti-
mation of " by OLS, however, is confounded by the existence of
factors such as race, age, and education (elements of Xi) or genetic
determinants (ai) that simultaneously influence birth weight and
infant health. The omitted variables formula implies that the OLS
coefficient from a bivariate regression of the health measure on birth
weight (with no other covariates included) is

(2) "OLS ! " "
cov%bwij, X#i$&

var%bwij&
"

cov%bwij,ai&

var%bwij&
.

Thus, even if there is a strong cross-sectional correlation between
health measures and birth weight—and "OLS is highly signifi-
cant—the strength of the relation could be driven by the correla-
tion between birth weight and other factors such as race, age,
education, and unobservable genetic factors.

The distinction between " and the latter two terms in (2) is
important. Existing LBW-reducing intervention efforts in the
United States (nutritional programs, smoking cessation) do not
seek to alter the age or education levels of mothers, and no policy
can ever affect immutable factors such as race or genetics. Thus,
if "OLS is primarily driven by the latter two terms in (2), then it
would be an exaggerated and perhaps misleading estimate of the
benefits (") of a policy that raises birth weights.

II.B. Identification Strategies

We use two different strategies to estimate ". First, we ex-
amine the population of twin births in the United States, and
include mother fixed effects in the regression. Twins share the
same mother, so the inclusion of fixed effects effectively controls

1036 QUARTERLY JOURNAL OF ECONOMICS

Using twins, we can apply FE to eliminate ai

Time dimension is replaced by the number of siblings ⇒ observe
multiple birth weight per mother
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Comparison of estimates across POLS and FE

OLS is over-estimating the impact on hospital costs – why?

TABLE III
POOLED OLS AND TWINS FIXED EFFECTS ESTIMATES OF THE EFFECT OF BIRTH WEIGHT

Birth weight
coefficient

Including congenital
anomalies

Excluding congenital
anomalies

Pooled OLS Fixed effects Pooled OLS Fixed effects

Hospital costs !29.95 !4.93 — —
(in 2000 dollars) (0.84) (0.44) — —

[!0.506] [!0.083] — —
Adj. R2 0.256 0.796 — —
Sample size 44,410 44,410 — —

Mortality, 1-year !0.1168 !0.0222 !0.1069 !0.0082
(per 1000 births) (0.0016) (0.0016) (0.0017) (0.0012)

[!0.412] [!0.078] [!0.377] [!0.029]
Adj. R2 0.169 0.585 0.164 0.629
Sample size 189,036 189,036 183,727 183,727

Mortality, 1-day !0.0739 !0.0071 !0.0675 !0.0003
(per 1000 births) (0.0015) (0.0010) (0.0015) (0.0006)

[!0.357] [!0.034] [!0.326] [!0.001]
Adj. R2 0.132 0.752 0.127 0.809
Sample size 189,036 189,036 183,727 183,727

Mortality, neonatal !0.105 !0.0154 !0.0962 !0.0041
(per 1000 births) (0.0016) (0.0013) (0.0016) (0.0008)

[!0.415] [!0.061] [!0.38] [!0.016]
Adj. R2 0.173 0.683 0.169 0.745
Sample size 189,036 189,036 183,727 183,727

5-min. APGAR score 0.1053 0.0117 0.1009 0.0069
(0–10 scale,
divided by 100)

(0.0011) (0.0012) (0.0011) (0.0011)
[0.506] [0.056] [0.485] [0.033]

Adj. R2 0.255 0.663 0.248 0.673
Sample size 159,070 159,070 154,449 154,449

Ventilator incidence !0.0837 !0.0039 !0.081 !0.002
(per 1000 births) (0.0015) (0.0017) (0.0015) (0.0016)

[!0.228] [!0.011] [!0.221] [!0.005]
Adj. R2 0.052 0.706 0.05 0.716
Sample size 189,036 189,036 183,727 183,727

Ventilator !30 min. !0.0724 0.0006 !0.0701 0.0016
(per 1000 births) (0.0013) (0.0013) (0.0014) (0.0012)

[!0.252] [0.002] [!0.244] [0.006]
Adj. R2 0.063 0.724 0.062 0.739
Sample size 189,036 189,036 183,727 183,727

See notes to Tables I and II. The data come from the 1989–1991 Linked Birth-Infant Death Detail Files and
the 1995–2000 HCUP Inpatient Database for New York and New Jersey. The first two columns use samples that
include twin pairs in which one or both twins either had a congenital anomaly at birth or whose cause of death
was a congenital anomaly. The second two columns exclude these twin pairs from the analysis. The HCUP data
do not contain information on congenital anomalies. The standard errors are in parentheses and are corrected for
heteroskedasticity and within-twin-pair correlation in the residuals. For APGAR score, the coefficients are scaled
up by 100. Numbers in square brackets indicate effect size in terms of standard deviations of the outcome per one
standard deviation in birth weight (667 grams). There are no other variables included in the regressions.

1055THE COSTS OF LOW BIRTH WEIGHT
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Comparison of estimates across POLS and FE

Similar when looking at dummy variables instead of bwij

FIGURE Ia
Hospital Costs and Birth Weight

Note: 1995–2000 NY/NJ Hospital Discharge Microdata.

FIGURE Ib
Infant Mortality (1-year) and Birth Weight

Note: Linked Birth-Death certificate data, 1989.

1053THE COSTS OF LOW BIRTH WEIGHT
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Another TWFE example: difference-in-differences

Example: introduction of a policy restricted to some regions of the country
Time t = 0 t = 1
Regions affected No region Northern Mexico + Veracruz
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Difference-in-Differences (DiD)

A random sample of individuals across the country is observed in two
periods t = 0, 1

yit = β + αidit + vit

dit =

{
1 if affected by policy at time t

0 otherwise

DiD estimator applies a standard TWFE error decomposition

vit = τt + ci + uit

ci : unobservable individual fixed effect

τt : aggregate time effect

uit : idiosynchratic error term
30



Identification

Compute E [yit |di , t] for all groups and for each period t = 0, 1

E [yit |di , t] for di = 1:
{
β + E [ci |di = 1] + τt0 + E [uit0 |di = 1] if t = 0
β + E [αi |di = 1] + E [ci |di = 1] + τt1 + E [uit1 |di = 1] if t = 1

E [yit |di , t] for di = 0:
{
β + E [ci |di = 0] + τt0 + E [uit0 |di = 0] if t = 0
β + E [ci |di = 0] + τt1 + E [uit1 |di = 0] if t = 1
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Identification

Assumption
Randomization hypothesis holds in first differences:

E [vit1 − vit0 |di = 1] = E [vit1 − vit0 |di = 0] = E [vit1 − vit0 ]

E [yit |di , t] for di = 1:
{
β + E [ci |di = 1] + τt0 + E [uit0 ] if t = 0
β + E [αi |di = 1] + E [ci |di = 1] + τt1 + E [uit1 ] if t = 1

E [yit |di , t] for di = 0:
{
β + E [ci |di = 0] + τt0 + E [uit0 ] if t = 0
β + E [ci |di = 0] + τt1 + E [uit1 ] if t = 1
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Identification: first and second differences

1st: cancels out time-invariant characteristics

∆yT = E [yit |di = 1, t = 1]− E [yit |di = 1, t = 0]
= E [αi |di = 1] + (τt1 − τt0) + E [uit1 − uit0 ]

∆yC = E [yit |di = 0, t = 1]− E [yit |di = 0, t = 0]
= (τt1 − τt0) + E [uit1 − uit0 ]

2nd: cancels out time effects and identifies ATT

∆yT −∆yC = E [αi |di = 1] = αATT
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What is DiD indentifying?

Excess outcome change for the treated as compared to the non-treated
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Estimating DiD

Use two dummy variables ⇒ TWFE

1 Group identifier (di ): 1 if individual i lives in affected regions
(independently from time), 0 otherwise

2 Post (Tt): 1 if observation refers to t = 1, 0 otherwise

Estimate the following with OLS:

yit = α0 + {α1di + α2Tt + α3di · Tt}+ Xitβ + vit

α1 ⇒ difference in means across all periods between affected and
non-affected regions

α2 ⇒ difference in means between t = 0 and t = 1

α3 ⇒ DiD estimate
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Violations

1 Ashenfelter’s dip: uit1 − uit0 is not unrelated to d

E [αDiD ] = αATT + E [uit1 − uit0 |dit1 = 1] +
−E [uit1 − uit0 |dit1 = 0]

Example: enrolment in a training programme is more likely if a
temporary dip in earnings occurs just before the programme

2 Lack of common trend: aggregate time effects are different

E [αDiD ] = αATT + (τ1,t1 − τ1,t0)− (τ0,t1 − τ0,t0)

3 Composition changes: effects driven by before-after changes in the
composition of respondents
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APPLICATION: Card and Krueger (1994)

What is the effect of minimum wage on employment?

Minimum wage change in one state (NJ) between t = 0 and t = 1

Compare with neighbouring state (PA) for comparable employment

Assumptions are valid?
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Wage range at t = 0 (pre) t = 1 (post)
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Wage range at t = 0 (pre) t = 1 (post)
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DiD estimates of the effect of minimum wage

Columns (i) and (ii): 1st differences
Column (iii): 2nd difference → ATT estimate corresponding to α3 in
this OLS regression

yit = α0 + {α1NJi + α2Postt + α3NJi · Postt}+ Xitβ + vit

39



TWFE and parallel trends

Consider 2x2 setting ⇒ DiD formula:

α2x2 = {E [YT |Post]− E [YT |Pre]} − {E [YC |Post]− E [YC |Pre]}

YT (group affected) and YC (group not affected)

Rewrite it using potential outcomes

α2x2 =
{
E [Y 1

T |Post]− E [Y 0
T |Post]

}
︸ ︷︷ ︸

ATT

+

{
E [Y 0

T |Post]− E [Y 0
T |Pre]

}
−
{
E [Y 0

C |Post]− E [Y 0
C |Pre]

}
︸ ︷︷ ︸

Non-parallel trends bias (i.e., selection bias)

To cancel out the second term ⇒ parallel trends
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Special case: staggered rollout

Intervention dit is adopted at multiple times t across multiple groups
Time t = 0 t = 1 t =2
Regions affected No region Northern Mexico

+ Veracruz
Northern Mexico
+ Veracruz +

Baja California +
Pacific Coast

41



Special case: staggered rollout

DiD extends to TWFE ⇒

Yit = αdit + τt + σi + ϵit (1)

The design in the example considers three different groups:

1 Regions that are never affected: U

2 Regions affected early: k

3 Regions affected later: l

Many comparisons are possible – Example: DiD for k and U

δ2x2 = [ȳ
post(k)
k − ȳ

pre(k)
k ]− [ȳ

post(k)
U − ȳ

pre(k)
U ]

Under what conditions will α equal the ATT?
42



TWFE: early versus never affected
b�2x2
kU =

✓
y

post(k)
k � y

pre(k)
k

◆
�
✓

y
post(k)
U � y

pre(k)
U

◆
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TWFE: late verus never affected
b�2x2
lU =

✓
y

post(l)
l � y

pre(l)
l

◆
�
✓

y
post(l)
U � y

pre(l)
U

◆
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TWFE: early versus late before t∗
�2x2,k
kl =

✓
y

MID(k,l)
k � y

Pre(k,l)
k

◆
�
✓

y
MID(k,l)
l � y

PRE(k,l)
l

◆
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TWFE: early versus late after t∗
�2x2,l
lk =

✓
y

POST (k,l)
l � y

MID(k,l)
l

◆
�
✓

y
POST (k,l)
k � y

MID(k,l)
k

◆
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Goodman-Bacon decomposition

Consider the following 2x2 comparisons:

δ2x2
kU ⇒ affected to never affected

δ2x2,k
kl ⇒ affected early to affected later before t∗

δ2x2,l
lk ⇒ affected early to affected later after t∗

Goodman-Bacon decomposition: α in equation (1) calculates a
weighted average of all these 2x2 comparisons

δ̃TWFE =
∑

k ̸=U

skU δ̃
2x2
kU +

∑

k ̸=U

∑

I>k

skI

[
µkI δ

2x2,k
kl + (1 − µkI )δ

2x2,l
lk

]

All weights are positive

s captures variances
µ captures the relevance of comparisons between affected groups
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Goodman-Bacon decomposition

Substitute potential outcomes for all the Y values

δ2x2
kU = ATTkPost +∆Y 0

k (Post(k),Pre)−∆Y 0
U(Post(k),Pre)

δ2x2
kl = ATTk(MID) + ∆Y 0

k (MID,Pre)−∆Y 0
l (MID,Pre)

δ2x2
lk = ATTl(Post(l)) + ∆Y 0

l (Post(l),MID)−∆Y 0
k (Post(l),MID)

−(ATTk(Post)− ATTk(MID))

Key takeaways:

All terms are a composition of ATT and parallel trend biases

δ2x2
lk includes an additional term ⇒ heterogeneity bias
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Interpreting TWFE estimates

The estimator δ̃TWFE is the sum of three components:

δ̃TWFE = VWATT + VWPT −∆ATT

1 ATT (VW stands for variance weighted)

2 Differences in parallel trends

3 Evolution of ATT over time

∆ATT = 0: ATT is constant over time ⇒ fine for TWFE

∆ATT > 0: ATT is dynamic and introduces a bias ⇒ attenuation bias
or even change in sign!
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Estimation

Consider the simple model:

yit = xitβ + vit

vit = ci + uit

1 Pooled OLS (POLS)

2 Fixed Effects (FE)

3 First Differencing (FD)

4 Random Effects (RE)
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First-differencing (FD) estimation

Removes ci by differencing adjacent observations:

∆yit = ∆xitβ +∆uit , t = 2, ...,T (we lose t = 1)

For consistency:

1 Orthogonality: E (uit |xi , ci ) = 0, t = 1, ...,T

2 Rank: rank E (∆X′
i∆Xi ) = K

FE and FD are the same when T = 2
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FE estimates

. xtreg lfare concen ldist ldistsq y98 y99 y00, fe cluster(id)

(Std. Err. adjusted for 1149 clusters in id)

------------------------------------------------------------------------------

| Robust

lfare | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

concen | .168859 .0494587 3.41 0.001 .0718194 .2658985

ldist | (dropped)

ldistsq | (dropped)

y98 | .0228328 .004163 5.48 0.000 .0146649 .0310007

y99 | .0363819 .0051275 7.10 0.000 .0263215 .0464422

y00 | .0977717 .0055054 17.76 0.000 .0869698 .1085735

_cons | 4.953331 .0296765 166.91 0.000 4.895104 5.011557

-------------+----------------------------------------------------------------

sigma_u | .43389176

sigma_e | .10651186

rho | .94316439 (fraction of variance due to u_i)

------------------------------------------------------------------------------
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FD estimates
. reg D.(lfare concen y98 y99 y00), nocons tsscons cluster(id)

Linear regression Number of obs = 3447

F( 3, 1148) = 26.29

Prob > F = 0.0000

R-squared = 0.0382

Root MSE = .12508

(Std. Err. adjusted for 1149 clusters in id)

------------------------------------------------------------------------------

| Robust

D.lfare | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

concen |

D1. | .1759764 .0430367 4.09 0.000 .0915371 .2604158

|

y98 |

D1. | .0227692 .0041573 5.48 0.000 .0146124 .030926

|

y99 |

D1. | .0364365 .005153 7.07 0.000 .026326 .0465469

|

y00 |

D1. | .0978497 .0055468 17.64 0.000 .0869666 .1087328

------------------------------------------------------------------------------

. * All estimates are similar to FE.

. * The tsscons option computes a more useful R-squared that allows the

. * mean change in lfare to be nonzero.
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All estimates are similar to FE
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Estimation

Consider the simple model:

yit = xitβ + vit

vit = ci + uit

1 Pooled OLS (POLS)

2 Fixed Effects (FE)

3 First Differencing (FD)

4 Random Effects (RE)

54



Random effects and Generalized Least Squares

Random effects make use of Generalized Least Squares (GLS)

Exploits the correlation structure across multiple equations:
1 unconditional variances across equations are different
2 unconditional covariances across equations are non-zero

Equations can represent time ⇒ in the population, each period
1, ..,T is one equation

yi = Xiβ + ui

yi is T × 1
Xi is T × K

ui is T × 1
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Variance-covariance (VCV) matrix of ui

Unconditional variance-covariance matrix plays a key role in GLS:

W ≡ E (uiu′i ) =




σ2
1 σ12 · · · σ1G

σ12 σ2
2 · · · σ2G

...
...

. . .
...

σ1G σ2G · · · σ2
G




Properties: W−1/2 is a symmetric nonsingular matrix such that

W−1/2W−1/2 = W−1

W−1/2WW−1/2 = IG
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GLS transformation and estimator

If W is known, we can multiply yi by W−1/2

W−1/2yi = W−1/2Xiβ +W−1/2ui
y∗i = X∗

i β + u∗i (2)

Why? ⇒ remove correlations in errors

E (u∗i u
∗′
i ) = W−1/2E (uiu′i )W

−1/2 = IG

GLS estimator is the POLS estimator of equation (2)

βGLS =

(
N∑

i=1

X∗′
i X∗

i

)−1( N∑

i=1

X∗′
i y∗i

)

=

(
N∑

i=1

X′
iW

−1Xi

)−1( N∑

i=1

X′
iW

−1yi

)

57



GLS and assumptions

y∗i = X∗
i β + u∗i (3)

1 Orthogonality: E (X′
iW

−1ui ) = 0

2 Rank: rank E (X′
iW

−1Xi ) = K

If W is not known ⇒ feasible GLS procedure

1 Assume initial W ⇒ apply GLS

2 Use results to estimate W ⇒ apply GLS

3 Iterate step 2 until GLS estimates are stable
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Random Effects

For a random draw i from the population

yit = xitβ + vit

vit = ci + uit

Orthogonality

E (uit |xi1, xi2, ..., xiT , ci ) = 0, t = 1, ...,T
E (ci |xi1, xi2, ..., xiT ) = E (ci )

Rank
W is nonsingular and E (X′

iW
−1Xi ) nonsingular.

non-singularity means in practice that the matrices are invertible.
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EXAMPLE: W without serial correlation

Consider the simplest case:

Var(uit) = σ2
u, t = 1, ...,T

Cov(uit , uis) = 0, t ̸= s

From the error decomposition, we can write:

Var(vit) = Var(ci + uit) = σ2
c + σ2

u

Cov(vit , vis) = Cov(ci + uit , ci + uis)

= Var(ci ) + Cov(ci , uis) + Cov(uit , ci ) + Cov(uit , uis)

= σ2
c
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EXAMPLE: W without serial correlation

The matrix W can be written as:

W =




σ2
c + σ2

u σ2
c σ2

c · · · σ2
c

σ2
c σ2

c + σ2
u σ2

c · · · ...
...

. . . . . .
... σ2

c

σ2
c · · · σ2

c σ2
c + σ2

u σ2
c

σ2
c · · · σ2

c σ2
c σ2

c + σ2
u




FGLS requires the initial W ⇒ only 2 parameters

1 σ2
u

2 σ2
c
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Estimator of σ2
u and σ2

c

Starting point ⇒ POLS ⇒ use residuals vit to estimate both

1 How to estimate σ2
u?

Since vit − v̄i = uit − ūi , we can write:

Var(vit − v̄i ) = Var(uit − ūi ) = σ2
u +

σ2
u

T
− 2Cov(uit , ūi )

= σ2
u +

σ2
u

T
− 2

σ2
u

T

= σ2
u

T − 1
T

T

T − 1
Var(vit − v̄i ) = σ2

u

2 How to estimate σ2
c?

Easy to compute because Cov(vit , vis) = σ2
c (see previous slide)

Breusch-Pagan test: test whether H0 : σ2
c = 0
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RE estimator

1 Use initial Ŵ

2 Apply FGLS estimator as RE estimator:

Âvar(β̂RE ) =

(
N∑

i=1

X′
iŴ

−1Xi

)−1( N∑

i=1

X′
iŴ

−1v̂i v̂′iŴ
−1Xi

)

(
N∑

i=1

X′
iŴ

−1Xi

)−1

3 Use new residuals to compute a new estimate of W

4 Repeat steps 2–3 until convergence
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Application: market concentration and airfares

N = 1, 149 U.S. air routes and the years 1997 through 2000
yit ⇒ log(fareit)

key explanatory variable ⇒ concenit (concentration ratio for route i)
. use airfare

. tab year

1997, 1998, |

1999, 2000 | Freq. Percent Cum.

------------+-----------------------------------

1997 | 1,149 25.00 25.00

1998 | 1,149 25.00 50.00

1999 | 1,149 25.00 75.00

2000 | 1,149 25.00 100.00

------------+-----------------------------------

Total | 4,596 100.00

. sum fare concen dist

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

fare | 4596 178.7968 74.88151 37 522

concen | 4596 .6101149 .196435 .1605 1

dist | 4596 989.745 611.8315 95 2724
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POLS estimates

. reg lfare concen ldist ldistsq y98 y99 y00, cluster(id)

(Std. Err. adjusted for 1149 clusters in id)

------------------------------------------------------------------------------

| Robust

lfare | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

concen | .3601203 .058556 6.15 0.000 .2452315 .4750092

ldist | -.9016004 .2719464 -3.32 0.001 -1.435168 -.3680328

ldistsq | .1030196 .0201602 5.11 0.000 .0634647 .1425745

y98 | .0211244 .0041474 5.09 0.000 .0129871 .0292617

y99 | .0378496 .0051795 7.31 0.000 .0276872 .048012

y00 | .09987 .0056469 17.69 0.000 .0887906 .1109493

_cons | 6.209258 .9117551 6.81 0.000 4.420364 7.998151

------------------------------------------------------------------------------

90
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FE estimates

. xtreg lfare concen ldist ldistsq y98 y99 y00, fe cluster(id)

(Std. Err. adjusted for 1149 clusters in id)

------------------------------------------------------------------------------

| Robust

lfare | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

concen | .168859 .0494587 3.41 0.001 .0718194 .2658985

ldist | (dropped)

ldistsq | (dropped)

y98 | .0228328 .004163 5.48 0.000 .0146649 .0310007

y99 | .0363819 .0051275 7.10 0.000 .0263215 .0464422

y00 | .0977717 .0055054 17.76 0.000 .0869698 .1085735

_cons | 4.953331 .0296765 166.91 0.000 4.895104 5.011557

-------------+----------------------------------------------------------------

sigma_u | .43389176

sigma_e | .10651186

rho | .94316439 (fraction of variance due to u_i)

------------------------------------------------------------------------------
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Note that what we call ci Stata refers to as u_i.

66



RE estimates
. * The coefficient on the time-varying variable concen drops quite a bit.

. * Notice that the RE and POLS coefficients on the time-constant

. * distance variables are pretty similar, something that often occurs.

. xtreg lfare concen ldist ldistsq y98 y99 y00, re cluster(id)

(Std. Err. adjusted for 1149 clusters in id)

------------------------------------------------------------------------------

| Robust

lfare | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

concen | .2089935 .0422459 4.95 0.000 .126193 .2917939

ldist | -.8520921 .2720902 -3.13 0.002 -1.385379 -.3188051

ldistsq | .0974604 .0201417 4.84 0.000 .0579833 .1369375

y98 | .0224743 .0041461 5.42 0.000 .014348 .0306005

y99 | .0366898 .0051318 7.15 0.000 .0266317 .046748

y00 | .098212 .0055241 17.78 0.000 .0873849 .109039

_cons | 6.222005 .9144067 6.80 0.000 4.429801 8.014209

-------------+----------------------------------------------------------------

sigma_u | .31933841

sigma_e | .10651186

rho | .89988885 (fraction of variance due to u_i)

------------------------------------------------------------------------------

. * Robust standard error on concen is quite a bit larger.
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Notice that the RE and POLS coefficients on the time-constant
distance variables are pretty similar, something that often occurs.
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RE estimates: omitting distance. * What if we do not control for distance in RE?

. xtreg lfare concen y98 y99 y00, re cluster(id)

Random-effects GLS regression Number of obs = 4596

Group variable: id Number of groups = 1149

(Std. Err. adjusted for 1149 clusters in id)

------------------------------------------------------------------------------

| Robust

lfare | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

concen | .0468181 .0427562 1.09 0.274 -.0369826 .1306188

y98 | .0239229 .0041907 5.71 0.000 .0157093 .0321364

y99 | .0354453 .0051678 6.86 0.000 .0253167 .045574

y00 | .0964328 .0055197 17.47 0.000 .0856144 .1072511

_cons | 5.028086 .0285248 176.27 0.000 4.972178 5.083993

-------------+----------------------------------------------------------------

sigma_u | .40942871

sigma_e | .10651186

rho | .93661309 (fraction of variance due to u_i)

------------------------------------------------------------------------------

. * The RE estimate is now much smaller than when ldist and ldistsq are

. * controlled for, and much smaller than the FE estimate. Thus, it can be

. * very harmful to omit time-constant variables in RE estimation.
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Estimate is much smaller than FE estimate

Can be very harmful to omit time-constant variables in RE
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