Microeconometrics

Linear panel data methods

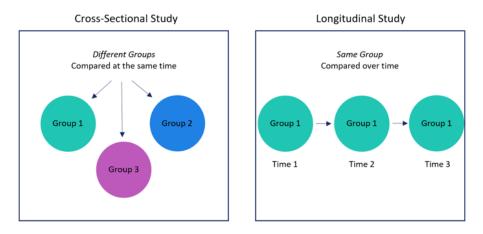
Alex Armand alex.armand@novasbe.pt

Summary of today's class

- Panel data setup
- Assumptions needed in panel data models
- Stimation methods and interpretation
 - Pooled OLS (POLS)
 - Pixed Effects (FE)
 - Sirst Differencing (FD)
 - andom Effects (RE)

Applications

From cross section to panel data



Random sampling with panel data

• Random sampling across *i* with fixed time periods *T*

 $\{(x_{it}, y_{it}) : t = 1, ..., T\}$

Two cases:

9 Panel is balanced: each individual *i* is observed in all periods *T*

- We will assume this case for this topic
- **2** Panel is unbalanced: don't observe some *i* for some of the periods *t*
 - Trickier because we must know why we are missing some time periods for some units
 - Selection models later on in the course

General specification

$$y_{it} = \mathsf{z}_i \delta + \mathsf{w}_{it} \gamma + \mathsf{g}_t \theta + \mathsf{v}_{it}$$

- $z_i \Rightarrow$ set of time-constant observed variables
- $w_{it} \Rightarrow$ set of time-varying observed variables
- $g_t \Rightarrow$ vector of aggregate time effects

Common feature: decomposition of the error term

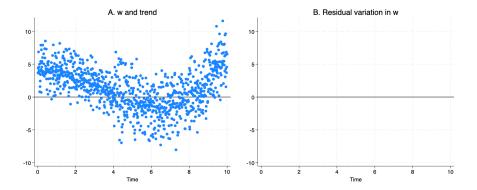
$$v_{it} = c_i + u_{it}$$

c_i ⇒ time-invariant unobservable characteristics
 u_{it} ⇒ idiosyncratic errors

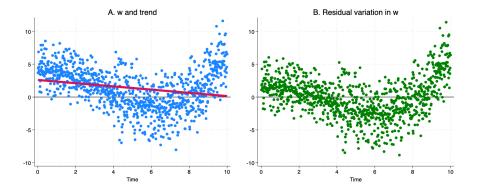
Aggregate time effects

- Time effects remove trends in y_{it} and w_{it} (focus on residual variation)
- How to choose time effects?
 - Depends on how much residual variation you want to use \Rightarrow allow for variation within each time group
- **Example**: assume w_{it} varies daily over 10 years ⇒ create some variables capturing time and space
 - $time_t \Rightarrow$ measure the time t continuously (each year is 1 unit)
 - $year_t \Rightarrow$ measure the year of t
 - $d_{j,t} \Rightarrow$ dummy equal to 1 if time t belongs to year j
 - days_{j,t} ⇒ dummy equal to 1 if time t belongs to group j in which days are groups of 3 days
 - $reg_i \Rightarrow$ dummy equal to 1 if the region of the respondent is region 1, 0 otherwise

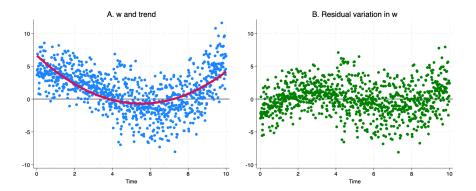
no time effects \Rightarrow $y_{it} = w_{it}\gamma + v_{it}$



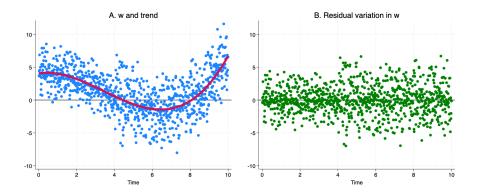
linear trend in time \Rightarrow $y_{it} = w_{it}\gamma + \theta_1 time_t + v_{it}$



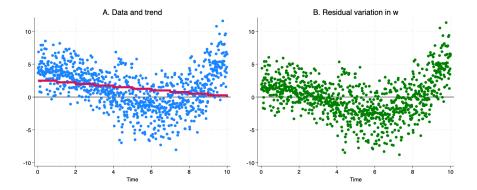
quadratic trend in time $\Rightarrow y_{it} = w_{it}\gamma + \theta_1 time_t + \theta_2 time_t^2 + v_{it}$



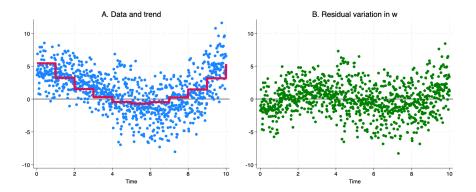
cubic trend in time \Rightarrow $y_{it} = w_{it}\gamma + \theta_1 time_t + \theta_2 time_t^2 + \theta_3 time_t^3 + v_{it}$



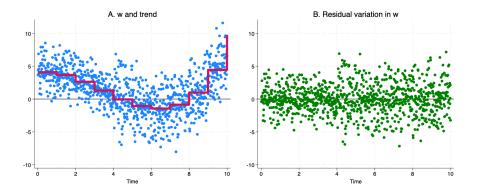
linear trend in year \Rightarrow $y_{it} = w_{it}\gamma + \theta_1 y_{ear_t} + v_{it}$



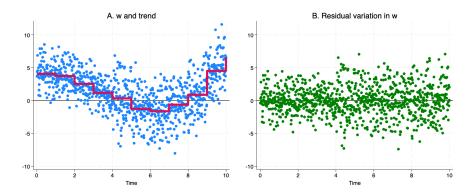
quadratic trend in year \Rightarrow $y_{it} = w_{it}\gamma + \theta_1 y_{ear_t} + \theta_2 y_{ear_t}^2 + v_{it}$



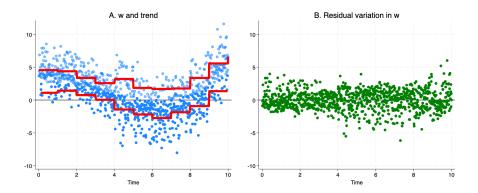
cubic trend in year \Rightarrow $y_{it} = w_{it}\gamma + \theta_1 y_{ear_t} + \theta_2 y_{ear_t}^2 + \theta_3 y_{ear_t}^3 + v_{it}$



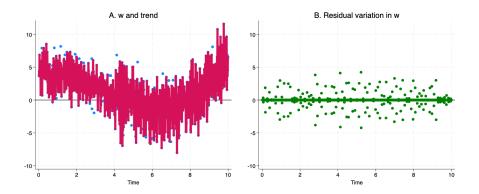
non-linear trend in year $\Rightarrow y_{it} = w_{it}\gamma + \sum_{j=2}^{10} \theta_j d_{j,t} + v_{it}$



(local) non-linear trend in year $\Rightarrow y_{it} = w_{it}\gamma + \sum_{j=2}^{10} \theta_j d_{j,t} \cdot reg_i + v_{it}$



non-linear trend in group of days $\Rightarrow y_{it} = w_{it}\gamma + \sum_{j=2}^{10} \theta_j days_{j,t} + v_{it}$



Consequences of decomposing the error term

• Correlation structure of the error term: *v_{it}* is almost certainly serially correlated

$$corr(v_{i,t}, v_{i,t-1}) = corr(c_i + u_{i,t}, c_i + u_{i,t-1}) = \sigma_c^2 + corr(c_i, u_{i,t-1}) + corr(c_i, u_{i,t}) + corr(u_{i,t}, u_{i,t-1})$$

- We require two types of assumptions concerning errors:
 - relationship between covariates and c_i
 - 2 relationship between covariates and u_{it}

Relationship between covariates and c_i

- **I** Fixed effect: no restrictions on the relationship between c_i and x_{it}
- 2 Random effect:

$$Cov(x_{it}, c_i) = 0, \quad t = 1, ..., T$$

Orrelated random effects: we model the relationship between c_i and x_{it}

Relationship between covariates and *u*_{it}

Ontemporaneous exogeneity

$$E(u_{it}|\mathsf{x}_{it},c_i)=0$$

2 Strict exogeneity

$$E(u_{it}|\mathbf{x}_{i1},...,\mathbf{x}_{iT},c_i)=0$$

Sequential exogeneity

$$E(u_{it}|x_{it},x_{i,t-1},...,x_{i1},c_i)=0$$

Estimation

Consider the simple model:

$$y_{it} = x_{it}\beta + v_{it}$$

 $v_{it} = c_i + u_{it}$

- Pooled OLS (POLS)
- Pixed Effects (FE)
- First Differencing (FD)
- Andom Effects (RE)

Pooled OLS (POLS)

- Same as OLS but with stacked observations
- Consistency ensured by

Rank condition

2 Orthogonality: $E(x'_{it}v_{it}) = 0$

$$E(x'_{it}c_i) = 0$$

Contemporaneous exogeneity: $E(x'_{it}u_{it}) = 0, t = 1, ..., T$

 \bullet Decomposition of error term \Rightarrow inference robust to serial correlation

Estimation

Consider the simple model:

$$y_{it} = x_{it}\beta + v_{it}$$

 $v_{it} = c_i + u_{it}$

- Pooled OLS (POLS)
- Fixed Effects (FE)
- First Differencing (FD)
- Random Effects (RE)

Fixed Effects (FE)

Obtain FE estimator in 2 steps:

Between equation (y
_i): average the equation across t → cross-section

$$\bar{y}_i \equiv \frac{\sum_{t=1}^T y_{it}}{T} = \frac{\sum_{t=1}^T x_{it}\beta + c_i + u_{it}}{T}$$
$$= \bar{x}_i\beta + c_i + \bar{u}_i$$

Within equation (ÿ_{it}): subtract the between equation from the original equation to eliminate c_i

$$\ddot{y}_{it} \equiv (y_{it} - \bar{y}_i) = (x_{it} - \bar{x}_i)\beta + u_{it} - \bar{u}_i = \ddot{x}_{it}\beta + \ddot{u}_{it}$$

Fixed Effects (FE)

FE estimator uses pooled OLS for $\ddot{y}_{it} = \ddot{x}_{it}\beta + \ddot{u}_{it}$

$$\hat{\beta}_{FE} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{\mathbf{x}}_{it}' \ddot{\mathbf{x}}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{\mathbf{x}}_{it}' \ddot{\mathbf{y}}_{it}\right)$$

Conditions for identification

- Orthogonality: $E(\ddot{x}'_{it}\ddot{u}_{it}) = 0, t=1,...,T$
- **2** Rank: rank $E(\ddot{x}'_{it}\ddot{x}_{it}) = K$
 - Condition is **violated** if x_{it} has elements that:
 - do not vary over time
 - change over time in the same way $\rightarrow \ddot{x}_{it}$ transformation introduces constant terms

FE and orthogonality

• The key condition for consistency is

$$E(\ddot{\mathbf{x}}'_{it}\ddot{u}_{it}) = E(\ddot{\mathbf{x}}'_{it}u_{it}) = E[(\mathbf{x}_{it} - \bar{\mathbf{x}}_i)'u_{it}] = 0$$

- The first step is possible because \bar{u}_i is equal to 0
- Includes the following conditions:

$$E(\mathbf{x}'_{it}u_{it}) = 0$$

$$E(\overline{\mathbf{x}}'_{i}u_{it}) = E\left[\left(\frac{\sum_{s=1}^{T}\mathbf{x}_{is}}{T}\right)'u_{it}\right] = \frac{\sum_{s=1}^{T}E(\mathbf{x}'_{is}u_{it})}{T} = 0$$

Strict exogeneity!

EXAMPLE: union status and wages

Impact of being in the union on log-wages using different panels for US

• Two approaches:

1 POLS: $y_i = \alpha + \gamma union_i + x_i\beta + v_i$

2 FE: $y_{it} = \alpha + \gamma union_{i,t} + x_{it}\beta + c_i + u_{it}$

• Compare estimates - what do we learn?

	Dep. variabl	e: Log-wage
Dataset	POLS	FE
Union status in		
May CPS, 1974–75	0.19	0.09
LSYM, 1970–78	0.28	0.19
Michigan PSID, 1970–79	0.23	0.14

Note. Adapted from Freeman (1984), "Longitudinal Analyses of the Effects of Trade Union," Journal of Labor Economics Vol. 2, No. 1, pp. 1-26. Estimates are calculated using the surveys listed at left. The cross-section estimates include controls for demographic and human capital variables.

APPLICATION: market concentration and airfares

Measure the impact of market concentration on airfares

- N = 1,149 U.S. air routes and the years 1997 through 2000
- *y_{it}* is log(*fare_{it}*) and the key explanatory variable is *concen_{it}*, the concentration ratio for route *i*.
- Other covariates are year dummies and the time-constant variables $log(dist_i)$ and $[log(dist_i)]^2$.
- Note that what we call c_i Stata refers to as u_i.

Dataset

. use airfare

. tab year

1997, 1998, 1999, 2000	Freq.	Percent	Cum.
1997 1998 1999	1,149 1,149 1,149	25.00 25.00 25.00	25.00 50.00 75.00
2000 Total	1,149 4,596	25.00 100.00	100.00
aum force cor	con dict		

. sum fare concen dist

Variable		Mean	Std. Dev.	Min	Max
fare		178.7968	74.88151	37	522
concen	4596	.6101149	.196435	.1605	1
dist	4596	989.745	611.8315	95	2724

POLS estimates (with "wrong" standard errors)

. reg lfare concen ldist ldistsq y98 y99 y00

Source + Model Residual	SS 355.453858 519.640516				Number of obs F(6, 4589) Prob > F R-squared	= 523.18 = 0.0000
Total	875.094374				Adj R-squared Root MSE	
lfare	Coef.				[95% Conf.	Interval]
concen dist distsq y98 y99 y00 _cons	.3601203 9016004	.0300691 .128273 .0097255 .0140419 .0140413 .0140432 .4206247	11.98 -7.03 10.59 1.50 2.70 2.711	0.000 0.000 0.133 0.007 0.000 0.000	.3011705 -1.153077 .0839529 0064046 .010322 .0723385 5.384631	.4190702 6501235 .1220863 .0486533 .0653772 .1274015 7.033884

POLS estimates (with serial correlation)

. reg lfare concen ldist ldistsq y98 y99 y00, cluster(id)

(Std. Err. adjusted for 1149 clusters in id)

lfare	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
concen ldist	.3601203	.058556	6.15 -3.32	0.000	.2452315	.4750092
ldistsq	. 1030196	.0201602	5.11	0.000	.0634647	. 1425745
y98 y99	.0211244	.0041474 .0051795	5.09 7.31	0.000 0.000	.0129871 .0276872	.0292617 .048012
y00 _cons	.09987 6.209258	.0056469 .9117551	17.69 6.81	0.000	.0887906 4.420364	.1109493 7.998151

FE estimates

. xtreg lfare concen ldist ldistsq y98 y99 y00, fe cluster(id)

		(Std	. Err. a	djusted f	or 1149 clust	ers in id)
 lfare	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
concen	.168859	.0494587	3.41	0.001	.0718194	.2658985
ldist	(dropped)					
ldistsq	(dropped)					
y98	.0228328	.004163	5.48	0.000	.0146649	.0310007
y99	.0363819	.0051275	7.10	0.000	.0263215	.0464422
y00	.0977717	.0055054	17.76	0.000	.0869698	.1085735
_cons	4.953331	.0296765	166.91	0.000	4.895104	5.011557
sigma_u sigma_e rho	.10651186	(fraction	of varia	nce due t	o u_i)	

FE estimates: non-linear effects

- Let the effect of concen depend on route distance.
- . sum ldist if y00

Variable	 	Std. Dev.	Min	Max
ldist		.6595331	4.553877	7.909857

. gen ldistconcen = (ldist - 6.7)*concen

FE estimates: non-linear effects

. xtreg lfare concen ldistconcen y98 y99 y00, fe cluster(id)

Fixed-effects (Group variable:	0	ression			of obs = of groups =	1000
		(Std	. Err. a	djusted fo	or 1149 clust	ers in id)
 lfare +-					[95% Conf.	Interval]
concen ldistconcen y98 y99 y00 _cons	.1652538 2498619 .0230874 .0355923	.0482782 .0828545 .0041459 .0051452 .0054655 .0317998	3.42 -3.02 5.57 6.92 17.85 155.28	0.001 0.003 0.000 0.000 0.000 0.000	4124251 .014953 .0254972	0872987 .0312218 .0456874
 sigma_u sigma_e rho	.50598296	(fraction			0 u_i)	

From FE to TWFE

Many applications of FE models use Two Way Fixed Effects (TWFE)

• Consider this example:

$$y_{it} = \alpha d_{it} + \tau_t + c_i + u_{it}$$

- *d_{it}* is the time-varying variable of interest
- τ_t and c_i are the time-specific FE and the individual-specific FE
- τ_t and c_i can also be captured by adding indicator variables for each period and individual
 - Replicates FE but with \uparrow computation (many parameters to estimate)

APPLICATION: the costs of low birth weight

How can we identify the causal impact of low birth weight?

• Cross-sectional regression would fail orthogonality

$$h_i = \alpha + \beta b w_i + X_i \gamma + \epsilon_i$$

- *bw_i* is birth weight of child *i*
- h_i is an indicator of health
- We cannot use panel data since you are born only once
- Can we use panel data methods applied to non-panel data?
 - Almond et al. QJE (2005) \Rightarrow effect of birth weight on child health applying FE estimator to non-panel data how?

APPLICATION: the costs of low birth weight

How can we identify the causal impact of low birth weight?

• Cross-sectional regression would fail orthogonality

$$h_i = \alpha + \beta b w_i + X_i \gamma + \epsilon_i$$

- *bw_i* is birth weight of child *i*
- h_i is an indicator of health
- We cannot use panel data since you are born only once
- Can we use panel data methods applied to non-panel data?
 - Almond et al. QJE (2005) \Rightarrow effect of birth weight on child health applying FE estimator to non-panel data how?

Twins to identify the causal effect (Almond et al. QJE 2005)

• Standard identification problem:

(1)
$$h_{ij} = \alpha + bw_{ij}\beta + X'_i\gamma + a_i + \varepsilon_{ij},$$

where h_{ij} is the underlying health of newborn j for mother i, bw_{ij} is birth weight, X_i is a vector of mother-specific observable determinants of health (e.g., race, age, education), a_i reflects mother-specific unobservable determinants of health (e.g., genetic factors), and ε_{ij} represents other newborn-specific idiosyncratic factors, assumed to be independent of all observable and unobservable factors.

- Using twins, we can apply FE to eliminate a_i
 - Time dimension is replaced by the number of siblings \Rightarrow observe multiple birth weight per mother

Comparison of estimates across POLS and FE

OLS is over-estimating the impact on hospital costs - why?

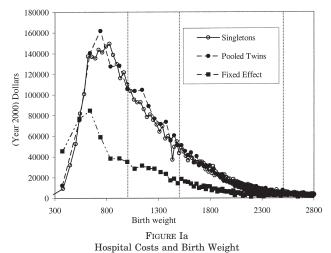
TABLE III

POOLED OLS AND TWINS FIXED EFFECTS ESTIMATES OF THE EFFECT OF BIRTH WEIGHT

Birth weight	0	congenital nalies	Excluding congenital anomalies		
coefficient	Pooled OLS	Fixed effects	Pooled OLS	Fixed effects	
Hospital costs	-29.95	-4.93		_	
(in 2000 dollars)	(0.84)	(0.44)	_		
	[-0.506]	[-0.083]	—	_	
Adj. R^2	0.256	0.796	_		
Sample size	44,410	44,410	_	_	
Mortality, 1-year	-0.1168	-0.0222	-0.1069	-0.0082	
(per 1000 births)	(0.0016)	(0.0016)	(0.0017)	(0.0012)	
-	[-0.412]	[-0.078]	[-0.377]	[-0.029]	
Adj. R^2	0.169	0.585	0.164	0.629	
Sample size	189,036	189,036	183,727	183,727	

Comparison of estimates across POLS and FE

Similar when looking at dummy variables instead of bwij



Note: 1995-2000 NY/NJ Hospital Discharge Microdata.

Another TWFE example: difference-in-differences

Example: introduction of a policy restricted to some regions of the country

Time	t = 0	t = 1
Regions affected	No region	Northern Mexico + Veracruz

Difference-in-Differences (DiD)

A random sample of individuals across the country is observed in two periods t = 0, 1

$$y_{it} = \beta + \alpha_i d_{it} + v_{it}$$
$$d_{it} = \begin{cases} 1 & \text{if affected by policy at time } t \\ 0 & \text{otherwise} \end{cases}$$

• DiD estimator applies a standard TWFE error decomposition

$$v_{it} = \tau_t + c_i + u_{it}$$

- c_i: unobservable individual fixed effect
- τ_t : aggregate time effect
- *u_{it}*: idiosynchratic error term

Identification

Compute $E[y_{it}|d_i, t]$ for all groups and for each period t = 0, 1

•
$$E[y_{it}|d_i, t]$$
 for $d_i = 1$:

$$\begin{cases}
\beta + E[c_i|d_i = 1] + \tau_{t_0} + E[u_{it_0}|d_i = 1] & \text{if } t = 0 \\
\beta + E[\alpha_i|d_i = 1] + E[c_i|d_i = 1] + \tau_{t_1} + E[u_{it_1}|d_i = 1] & \text{if } t = 1
\end{cases}$$

• $E[y_{it}|d_i, t]$ for $d_i = 0$:

$$\begin{cases} \beta + E[c_i|d_i = 0] + \tau_{t_0} + E[u_{it_0}|d_i = 0] & \text{if } t = 0\\ \beta + E[c_i|d_i = 0] + \tau_{t_1} + E[u_{it_1}|d_i = 0] & \text{if } t = 1 \end{cases}$$

Identification

Assumption

Randomization hypothesis holds in first differences:

$$E[v_{it_1} - v_{it_0}|d_i = 1] = E[v_{it_1} - v_{it_0}|d_i = 0] = E[v_{it_1} - v_{it_0}]$$

•
$$E[y_{it}|d_i, t]$$
 for $d_i = 1$:

$$\begin{cases} \beta + E[c_i|d_i = 1] + \tau_{t_0} + E[u_{it_0}] & \text{if } t = 0\\ \beta + E[\alpha_i|d_i = 1] + E[c_i|d_i = 1] + \tau_{t_1} + E[u_{it_1}] & \text{if } t = 1 \end{cases}$$

• $E[y_{it}|d_i, t]$ for $d_i = 0$:

$$\begin{cases} \beta + E[c_i|d_i = 0] + \tau_{t_0} + E[u_{it_0}] & \text{if } t = 0\\ \beta + E[c_i|d_i = 0] + \tau_{t_1} + E[u_{it_1}] & \text{if } t = 1 \end{cases}$$

Identification: first and second differences

• 1st: cancels out time-invariant characteristics

$$\begin{aligned} \Delta y_{\mathcal{T}} &= E[y_{it}|d_i = 1, t = 1] - E[y_{it}|d_i = 1, t = 0] \\ &= E[\alpha_i|d_i = 1] + (\tau_{t_1} - \tau_{t_0}) + E[u_{it_1} - u_{it_0}] \end{aligned}$$

$$\Delta y_C = E[y_{it}|d_i = 0, t = 1] - E[y_{it}|d_i = 0, t = 0]$$

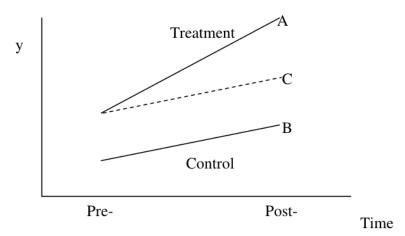
= $(\tau_{t_1} - \tau_{t_0}) + E[u_{it_1} - u_{it_0}]$

• 2nd: cancels out time effects and identifies ATT

$$\Delta y_T - \Delta y_C = E[\alpha_i | d_i = 1] = \alpha^{ATT}$$

What is DiD indentifying?

Excess outcome change for the treated as compared to the non-treated



Estimating DiD

- Use two dummy variables \Rightarrow TWFE
 - Group identifier (d_i): 1 if individual i lives in affected regions (independently from time), 0 otherwise
 - **2 Post** (T_t) : 1 if observation refers to t = 1, 0 otherwise
- Estimate the following with OLS:

$$y_{it} = \alpha_0 + \{\alpha_1 d_i + \alpha_2 T_t + \alpha_3 d_i \cdot T_t\} + X_{it}\beta + v_{it}$$

- $\alpha_1 \Rightarrow$ difference in means across all periods between affected and non-affected regions
- $\alpha_2 \Rightarrow$ difference in means between t = 0 and t = 1
- $\alpha_3 \Rightarrow \text{DiD estimate}$

Violations

• Ashenfelter's dip: $u_{it_1} - u_{it_0}$ is not unrelated to d

$$E[\alpha^{DiD}] = \alpha^{ATT} + E[u_{it_1} - u_{it_0}|d_{it_1} = 1] + -E[u_{it_1} - u_{it_0}|d_{it_1} = 0]$$

- *Example*: enrolment in a training programme is more likely if a temporary dip in earnings occurs just before the programme
- 2 Lack of common trend: aggregate time effects are different

$$E[\alpha^{DiD}] = \alpha^{ATT} + (\tau_{1,t_1} - \tau_{1,t_0}) - (\tau_{0,t_1} - \tau_{0,t_0})$$

Composition changes: effects driven by before-after changes in the composition of respondents

APPLICATION: Card and Krueger (1994)

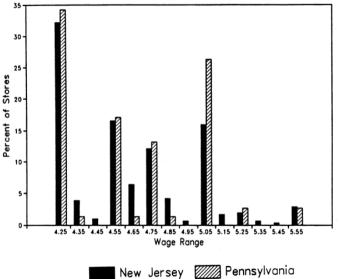
What is the effect of minimum wage on employment?

On April 1, 1992, New Jersey's minimum wage rose from \$4.25 to \$5.05 per hour. To evaluate the impact of the law we surveyed 410 fast-food restaurants in New Jersey and eastern Pennsylvania before and after the rise. Comparisons of employment growth at stores in New Jersey and Pennsylvania (where the minimum wage was constant) provide simple estimates of the effect of the higher minimum wage. We also compare employment changes at stores in New Jersey that were initially paying high wages (above \$5) to the changes at lower-wage stores. We find no indication that the rise in the minimum wage reduced employment. (JEL J30, J23)

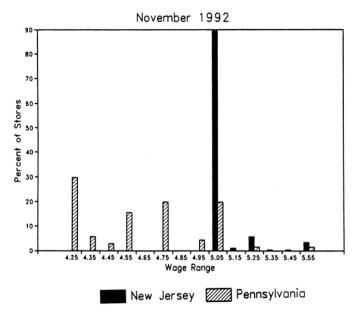
- Minimum wage change in one state (NJ) between t = 0 and t = 1
- Compare with neighbouring state (PA) for comparable employment
- Assumptions are valid?

Wage range at t = 0 (pre) t = 1 (post)

February 1992



Wage range at t = 0 (pre) t = 1 (post)



DiD estimates of the effect of minimum wage

- Columns (i) and (ii): 1st differences
- Column (iii): 2nd difference \rightarrow ATT estimate corresponding to α_3 in this OLS regression

$$\mathbf{v}_{it} = \alpha_0 + \{\alpha_1 N J_i + \alpha_2 Post_t + \alpha_3 N J_i \cdot Post_t\} + \mathsf{X}_{it}\beta + \mathbf{v}_{it}\beta$$

	Mean change in outcome			
Outcome measure	NJ	PA	NJ-PA	
	(i)	(ii)	(iii)	
Store Characteristics:				
1. Fraction full-time workers ^c (percentage)	2.64	-4.65	7.29	
	(1.71)	(3.80)	(4.17)	
2. Number of hours open per weekday	-0.00	0.11	-0.11	
	(0.06)	(0.08)	(0.10)	
3. Number of cash registers	-0.04	0.13	-0.17	
	(0.04)	(0.10)	(0.11)	
 Number of cash registers open	-0.03	-0.20	0.17	
at 11:00 A.M.	(0.05)	(0.08)	(0.10)	

TWFE and parallel trends

• Consider $2x^2$ setting \Rightarrow DiD formula:

$$\alpha^{2\times 2} = \{E[Y_T|Post] - E[Y_T|Pre]\} - \{E[Y_C|Post] - E[Y_C|Pre]\}$$

- Y_T (group affected) and Y_C (group not affected)
- Rewrite it using potential outcomes

$$\alpha^{2\times 2} = \underbrace{\left\{ E[Y_T^1 | Post] - E[Y_T^0 | Post] \right\}}_{ATT} + \underbrace{\left\{ E[Y_T^0 | Post] - E[Y_T^0 | Pre] \right\}}_{Post} - \left\{ E[Y_C^0 | Post] - E[Y_C^0 | Pre] \right\}}_{Non-parallel trends bias (i.e., selection bias)}$$

• To cancel out the second term \Rightarrow parallel trends

Special case: staggered rollout

Intervention d_{it} is adopted at multiple times t across multiple groups

Time	t = 0	t = 1	t =2
Regions affected	No region	Northern Mexico	Northern Mexico
		+ Veracruz	+ Veracruz +
			Baja California +
			Pacific Coast

Special case: staggered rollout

• DiD extends to TWFE \Rightarrow

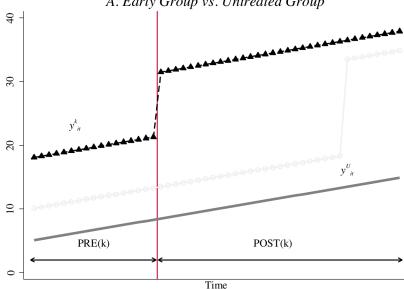
$$Y_{it} = \alpha d_{it} + \tau_t + \sigma_i + \epsilon_{it} \tag{1}$$

- The design in the example considers three different groups:
 - Regions that are never affected: U
 - 2 Regions affected early: k
 - 3 Regions affected later: /
- Many comparisons are possible Example: DiD for k and U

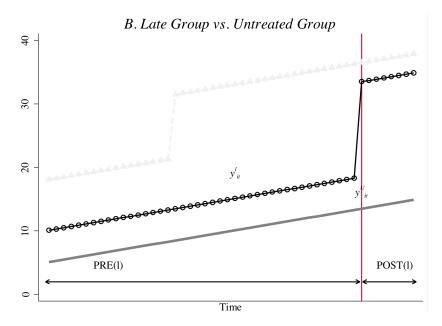
$$\delta^{2\times 2} = [\bar{y}_{k}^{post(k)} - \bar{y}_{k}^{pre(k)}] - [\bar{y}_{U}^{post(k)} - \bar{y}_{U}^{pre(k)}]$$

• Under what conditions will α equal the ATT?

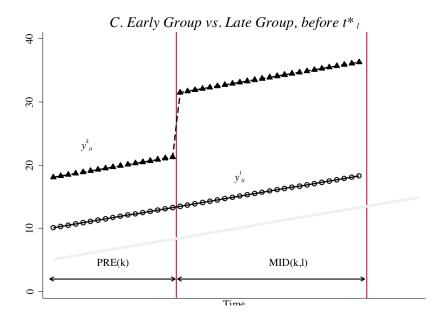
TWFE: early versus never affected



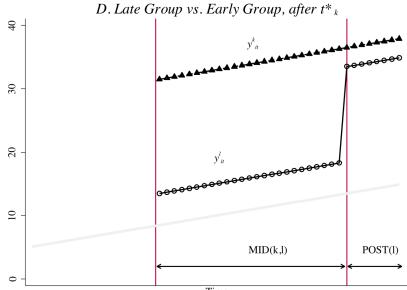
TWFE: late verus never affected



TWFE: early versus late before t^*



TWFE: early versus late after t^*



Goodman-Bacon decomposition

Consider the following 2x2 comparisons:

- $\delta_{kU}^{2\times 2} \Rightarrow$ affected to never affected
- $\delta_{kl}^{2\times 2,k} \Rightarrow$ affected early to affected later before t^*
- $\delta_{lk}^{2\times 2,l} \Rightarrow$ affected early to affected later after t^*

Goodman-Bacon decomposition: α in equation (1) calculates a weighted average of all these 2x2 comparisons

$$\tilde{\delta}^{TWFE} = \sum_{k \neq U} s_{kU} \tilde{\delta}_{kU}^{2x2} + \sum_{k \neq U} \sum_{I > k} s_{kI} \left[\mu_{kI} \delta_{kI}^{2x2,k} + (1 - \mu_{kI}) \delta_{Ik}^{2x2,l} \right]$$

- All weights are positive
 - s captures variances
 - μ captures the relevance of comparisons between affected groups

Goodman-Bacon decomposition

• Substitute potential outcomes for all the Y values

$$\delta_{kU}^{2 imes 2} = ATT_k Post + \Delta Y_k^0 (Post(k), Pre) - \Delta Y_U^0 (Post(k), Pre)$$

$$\delta_{kl}^{2\times 2} = ATT_k(MID) + \Delta Y_k^0(MID, Pre) - \Delta Y_l^0(MID, Pre)$$

$$\delta_{lk}^{2\times 2} = ATT_{l}(Post(l)) + \Delta Y_{l}^{0}(Post(l), MID) - \Delta Y_{k}^{0}(Post(l), MID) - (ATT_{k}(Post) - ATT_{k}(MID))$$

Key takeaways:

1

- All terms are a composition of ATT and parallel trend biases
- $\delta_{lk}^{2\times 2}$ includes an additional term \Rightarrow heterogeneity bias

Interpreting TWFE estimates

The estimator $\tilde{\delta}^{\textit{TWFE}}$ is the sum of three components:

$$ilde{\delta}^{TWFE} = VWATT + VWPT - \Delta ATT$$

ATT (VW stands for variance weighted)

- 2 Differences in parallel trends
- Sevential Evolution of ATT over time
 - $\triangle ATT = 0$: ATT is constant over time \Rightarrow fine for TWFE
 - ΔATT > 0: ATT is dynamic and introduces a bias ⇒ attenuation bias or even change in sign!

Estimation

Consider the simple model:

$$y_{it} = x_{it}\beta + v_{it}$$

 $v_{it} = c_i + u_{it}$

- Pooled OLS (POLS)
- Pixed Effects (FE)
- **③** First Differencing (FD)
- Andom Effects (RE)

First-differencing (FD) estimation

• Removes c_i by differencing adjacent observations:

$$\Delta y_{it} = \Delta x_{it}\beta + \Delta u_{it}, \quad t = 2, ..., T$$
 (we lose $t = 1$)

- For consistency:
 - **Orthogonality**: $E(u_{it}|x_i, c_i) = 0, t = 1, ..., T$
 - **2** Rank: rank $E(\Delta X'_i \Delta X_i) = K$
- FE and FD are the same when T = 2

FE estimates

. xtreg lfare concen ldist ldistsq y98 y99 y00, fe cluster(id)

		(Std	. Err. a	djusted f	or 1149 clust	ers in id)
 lfare	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
concen	.168859	.0494587	3.41	0.001	.0718194	.2658985
ldist	(dropped)					
ldistsq	(dropped)					
y98	.0228328	.004163	5.48	0.000	.0146649	.0310007
y99	.0363819	.0051275	7.10	0.000	.0263215	.0464422
y00	.0977717	.0055054	17.76	0.000	.0869698	.1085735
_cons	4.953331	.0296765	166.91	0.000	4.895104	5.011557
sigma_u sigma_e rho	.10651186	(fraction	of varia	nce due t	o u_i)	

FD estimates

Linear regression

. reg D.(lfare concen y98 y99 y00), nocons tsscons cluster(id)

(Std. Err. adjusted for 1149 clusters in id)

 D.lfare	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
concen D1. 	.1759764	.0430367	4.09	0.000	.0915371	.2604158
y98 D1. 	.0227692	.0041573	5.48	0.000	.0146124	.030926
y99 D1. 	.0364365	.005153	7.07	0.000	.026326	.0465469
y00 D1.	.0978497	.0055468	17.64	0.000	.0869666	.1087328

• All estimates are similar to FE

Estimation

Consider the simple model:

$$y_{it} = x_{it}\beta + v_{it}$$

 $v_{it} = c_i + u_{it}$

- Pooled OLS (POLS)
- Pixed Effects (FE)
- First Differencing (FD)
- Random Effects (RE)

Random effects and Generalized Least Squares

Random effects make use of Generalized Least Squares (GLS)

- Exploits the correlation structure across multiple equations:
 - unconditional variances across equations are different
 - 2 unconditional covariances across equations are non-zero
- Equations can represent time \Rightarrow in the population, each period 1, ..., T is one equation

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{u}_i$$

- y_i is $T \times 1$
- X_i is $T \times K$
- u_i is $T \times 1$

Variance-covariance (VCV) matrix of u_i

Unconditional variance-covariance matrix plays a key role in GLS:

$$W \equiv E(\mathbf{u}_{i}\mathbf{u}_{i}') = \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1G} \\ \sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2G} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1G} & \sigma_{2G} & \cdots & \sigma_{G}^{2} \end{pmatrix}$$

• Properties: $W^{-1/2}$ is a symmetric nonsingular matrix such that

•
$$W^{-1/2}W^{-1/2} = W^{-1}$$

•
$$W^{-1/2}WW^{-1/2} = I_G$$

GLS transformation and estimator

If W is **known**, we can multiply y_i by $W^{-1/2}$

$$W^{-1/2}y_{i} = W^{-1/2}X_{i}\beta + W^{-1/2}u_{i}$$

$$y_{i}^{*} = X_{i}^{*}\beta + u_{i}^{*}$$
 (2)

• Why? \Rightarrow remove correlations in errors

$$E(\mathbf{u}_{i}^{*}\mathbf{u}_{i}^{*\prime}) = W^{-1/2}E(\mathbf{u}_{i}\mathbf{u}_{i}^{\prime})W^{-1/2} = I_{G}$$

• GLS estimator is the POLS estimator of equation (2)

$$\beta^{GLS} = \left(\sum_{i=1}^{N} X_i^{*\prime} X_i^{*}\right)^{-1} \left(\sum_{i=1}^{N} X_i^{*\prime} y_i^{*}\right)$$
$$= \left(\sum_{i=1}^{N} X_i^{\prime} W^{-1} X_i\right)^{-1} \left(\sum_{i=1}^{N} X_i^{\prime} W^{-1} y_i\right)$$

GLS and assumptions

$$\mathbf{y}_i^* = \mathbf{X}_i^* \boldsymbol{\beta} + \mathbf{u}_i^* \tag{3}$$

• Orthogonality:
$$E(X'_i W^{-1}u_i) = 0$$

2 Rank: rank
$$E(X'_iW^{-1}X_i) = K$$

If W is not known \Rightarrow feasible GLS procedure

) Assume initial
$$W \Rightarrow$$
 apply GLS

(

2 Use results to estimate
$$W \Rightarrow$$
 apply GLS

Random Effects

For a random draw i from the population

$$y_{it} = x_{it}\beta + v_{it}$$

 $v_{it} = c_i + u_{it}$

• Orthogonality

$$E(u_{it}|x_{i1}, x_{i2}, ..., x_{iT}, c_i) = 0, t = 1, ..., T$$
$$E(c_i|x_{i1}, x_{i2}, ..., x_{iT}) = E(c_i)$$

Rank

- W is nonsingular and $E(X'_i W^{-1}X_i)$ nonsingular.
- non-singularity means in practice that the matrices are invertible.

EXAMPLE: W without serial correlation

• Consider the simplest case:

$$Var(u_{it}) = \sigma_u^2, t = 1, ..., T$$

 $Cov(u_{it}, u_{is}) = 0, t \neq s$

• From the error decomposition, we can write:

$$Var(v_{it}) = Var(c_i + u_{it}) = \sigma_c^2 + \sigma_u^2$$

$$Cov(v_{it}, v_{is}) = Cov(c_i + u_{it}, c_i + u_{is})$$

=
$$Var(c_i) + Cov(c_i, u_{is}) + Cov(u_{it}, c_i) + Cov(u_{it}, u_{is})$$

=
$$\sigma_c^2$$

EXAMPLE: W without serial correlation

• The matrix W can be written as:

$$W = \begin{pmatrix} \sigma_c^2 + \sigma_u^2 & \sigma_c^2 & \sigma_c^2 & \cdots & \sigma_c^2 \\ \sigma_c^2 & \sigma_c^2 + \sigma_u^2 & \sigma_c^2 & \cdots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \sigma_c^2 \\ \sigma_c^2 & \cdots & \sigma_c^2 & \sigma_c^2 + \sigma_u^2 & \sigma_c^2 \\ \sigma_c^2 & \cdots & \sigma_c^2 & \sigma_c^2 & \sigma_c^2 + \sigma_u^2 \end{pmatrix}$$

• FGLS requires the initial $W \Rightarrow$ only 2 parameters

$$\bullet \sigma_u^2$$

2 σ_c^2

Estimator of σ_u^2 and σ_c^2

Starting point \Rightarrow POLS \Rightarrow use residuals v_{it} to estimate both

1) How to estimate
$$\sigma_u^2$$
?

• Since
$$v_{it} - \bar{v}_i = u_{it} - \bar{u}_i$$
, we can write:

$$Var(v_{it} - \bar{v}_i) = Var(u_{it} - \bar{u}_i) = \sigma_u^2 + \frac{\sigma_u^2}{T} - 2Cov(u_{it}, \bar{u}_i)$$
$$= \sigma_u^2 + \frac{\sigma_u^2}{T} - 2\frac{\sigma_u^2}{T}$$
$$= \sigma_u^2 \frac{T - 1}{T}$$
$$\frac{T}{T - 1}Var(v_{it} - \bar{v}_i) = \sigma_u^2$$

2 How to estimate σ_c^2 ?

- Easy to compute because $Cov(v_{it}, v_{is}) = \sigma_c^2$ (see previous slide)
- Breusch-Pagan test: test whether $H_0: \sigma_c^2 = 0$

RE estimator

- Use initial Ŵ
- Apply FGLS estimator as RE estimator:

$$\widehat{Avar}(\widehat{\beta}_{RE}) = \left(\sum_{i=1}^{N} X_i' \widehat{W}^{-1} X_i\right)^{-1} \left(\sum_{i=1}^{N} X_i' \widehat{W}^{-1} \widehat{v}_i \widehat{v}_i' \widehat{W}^{-1} X_i\right)$$
$$\left(\sum_{i=1}^{N} X_i' \widehat{W}^{-1} X_i\right)^{-1}$$

 \bigcirc Use new residuals to compute a new estimate of W

Repeat steps 2–3 until convergence

Application: market concentration and airfares

- N = 1,149 U.S. air routes and the years 1997 through 2000
- $y_{it} \Rightarrow \log(fare_{it})$

use airfare
tab year

• key explanatory variable \Rightarrow concen_{it} (concentration ratio for route *i*)

1997, 1998, 1999, 2000	Freq.	Percent	Cum.
1997 1998 1999 2000	1,149 1,149 1,149 1,149 1,149	25.00 25.00 25.00 25.00	25.00 50.00 75.00 100.00
Total	4,596	100.00	

. sum fare concen dist

Variable		Mean	Std. Dev.	Min	Max
fare concen	4596	178.7968 .6101149	74.88151 .196435	 37 . 1605	522 1
dist	4596	989.745	611.8315	95	2724

POLS estimates

. reg lfare concen ldist ldistsq y98 y99 y00, cluster(id)

(Std. Err. adjusted for 1149 clusters in id)

lfare	 Coef. +	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
concen ldist	.3601203	.058556	6.15 -3.32	0.000	.2452315	.4750092
ldistsq		.0201602	5.11	0.000	.0634647	.1425745
y98	.0211244	.0041474	5.09	0.000	.0129871	.0292617
y99	.0378496	.0051795	7.31	0.000	.0276872	.048012
y00 cons	.09987 6.209258	.0056469 .9117551	17.69 6.81	0.000	.0887906 4.420364	.1109493 7.998151
_00115	1 0.203200	.011/001	0.01	0.000	4.420004	1.550151

FE estimates

. xtreg lfare concen ldist ldistsq y98 y99 y00, fe cluster(id)

(Std. Err. adjusted for 1149 clusters in id)

 lfare	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
concen ldist	.168859 (dropped)	.0494587	3.41	0.001	.0718194	. 2658985
ldistsq	(dropped)					
y98	.0228328	.004163	5.48	0.000	.0146649	.0310007
y99	.0363819	.0051275	7.10	0.000	.0263215	.0464422
y00	.0977717	.0055054	17.76	0.000	.0869698	.1085735
_cons	4.953331	.0296765	166.91	0.000	4.895104	5.011557
+						
sigma_u	.43389176					
sigma_e	.10651186					
rho	.94316439	(fraction	of varia	nce due t	o u_i)	

Note that what we call c_i Stata refers to as u_i.

RE estimates

. xtreg lfare concen ldist ldistsq y98 y99 y00, re cluster(id)

 lfare	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
concen	.2089935	.0422459	4.95	0.000	.126193	.2917939
ldist	8520921	.2720902	-3.13	0.002	-1.385379	3188051
ldistsq	.0974604	.0201417	4.84	0.000	.0579833	.1369375
y98	.0224743	.0041461	5.42	0.000	.014348	.0306005
y99	.0366898	.0051318	7.15	0.000	.0266317	.046748
y00	.098212	.0055241	17.78	0.000	.0873849	.109039
_cons	6.222005	.9144067	6.80	0.000	4.429801	8.014209
sigma_u sigma_e rho	.31933841 .10651186 .89988885	(fraction	of varia	nce due t	o u_i)	

(Std. Err. adjusted for 1149 clusters in id)

 Notice that the RE and POLS coefficients on the time-constant distance variables are pretty similar, something that often occurs.

RE estimates: omitting distance

. xtreg lfare concen y98 y99 y00, re cluster(id)

Random-effects GLS regression	Number of obs	=	4596
Group variable: id	Number of groups	=	1149

(Std. Err. adjusted for 1149 clusters in id)

 lfare	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
concen y98 y99 y00 _cons	.0468181 .0239229 .0354453 .0964328 5.028086	.0427562 .0041907 .0051678 .0055197 .0285248	1.09 5.71 6.86 17.47 176.27	0.274 0.000 0.000 0.000 0.000	0369826 .0157093 .0253167 .0856144 4.972178	.1306188 .0321364 .045574 .1072511 5.083993
sigma_u sigma_e rho	.40942871 .10651186 .93661309	(fraction	of varia	nce due t	o u_i)	

• Estimate is much smaller than FE estimate

• Can be very harmful to omit time-constant variables in RE