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Summary of today’s class

@ Panel data setup
@ Assumptions needed in panel data models

© Estimation methods and interpretation
® Pooled OLS (POLS)
© Fixed Effects (FE)
© First Differencing (FD)

© Random Effects (RE)

@ Applications



From cross section to panel data

Cross-Sectional Study

Longitudinal Study

Different Groups
Compared at the same time

<N

Time 1

Same Group
Compared over time

Time 2

Time 3




Random sampling with panel data

@ Random sampling across i with fixed time periods T

{(xit,yir) : t=1,.., T}

@ Two cases:

© Panel is balanced: each individual / is observed in all periods T
o We will assume this case for this topic
@ Panel is unbalanced: don't observe some i for some of the periods t

o Trickier because we must know why we are missing some time periods
for some units

o Selection models later on in the course



General specification

Vit = Zj0 + Wity + g¢0 + Vi

@ z; = set of time-constant observed variables
@ w;; = set of time-varying observed variables

@ g; = vector of aggregate time effects

Common feature: decomposition of the error term

Vie = Cj + Ujt

@ ¢, = time-invariant unobservable characteristics

@ u;; = idiosyncratic errors



Aggregate time effects

e Time effects remove trends in y;; and wj; (focus on residual variation)

e How to choose time effects?

Depends on how much residual variation you want to use = allow for
variation within each time group

@ Example: assume wj; varies daily over 10 years = create some
variables capturing time and space

time; = measure the time t continuously (each year is 1 unit)
year; = measure the year of t
d;,+ = dummy equal to 1 if time t belongs to year j

days;j ; = dummy equal to 1 if time t belongs to group j in which days
are groups of 3 days

reg; = dummy equal to 1 if the region of the respondent is region 1, 0
otherwise



Aggregate time effects — an example

no time effects =  y; = wiy + Vit

A. w and trend B. Residual variation in w




Aggregate time effects — an example

linear trend in time = y; = wjy + O1time; + v

A. w and trend B. Residual variation in w




Aggregate time effects — an example

quadratic trend in time =y = w;y + 01time; 4 Oatime? + v

A. w and trend B. Residual variation in w




Aggregate time effects — an example

cubic trend in time = y; = wjy + O1time; + Hgtime,_? + 03timet3 + Vi

A. w and trend B. Residual variation in w
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Aggregate time effects — an example

linear trend in year =  y; = w;y + Oy years + vi

A. Data and trend B. Residual variation in w




Aggregate time effects — an example

quadratic trend in year =  y; = w;y + Oy year; + 02yeart2 + Vi

A. Data and trend
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Aggregate time effects — an example

cubic trend in year =  y;; = wjy + f1year; + Gzyeart2 + 93yearf’ + Vit

A. w and trend B. Residual variation in w




Aggregate time effects — an example

10
non-linear trend in year =  y; = wiy + E 0;d; + + vit
j=2
A. w and trend B. Residual variation in w




Aggregate time effects — an example

10
(local) non-linear trend in year = y; = wpy + E 0;d; ¢ - regi + vir
j=2
A. w and trend B. Residual variation in w




Aggregate time effects — an example

10
non-linear trend in group of days =  y; = wpy + Z O;days; + + vit
j=2

A. w and trend B. Residual variation in w




Consequences of decomposing the error term

e Correlation structure of the error term: vj; is almost certainly
serially correlated

corr(Vig, Vit—1) = corr(ci+ Ui, G+ Ujr—1)

= o2+ corr(cj, uj—1) + corr(ci, Ui )

+corr(uj ¢, Uj t—1)

@ We require two types of assumptions concerning errors:

@ relationship between covariates and ¢;

@ relationship between covariates and u;;



Relationship between covariates and ¢;

@ Fixed effect: no restrictions on the relationship between ¢; and x;;

© Random effect:

© Correlated random effects: we model the relationship between c¢;
and x;;



Relationship between covariates and u;;

@ Contemporaneous exogeneity

E(uit|xit,ci) =0

@ Strict exogeneity

E(ujt|xi1, ..., xiT,ci) =0

© Sequential exogeneity

E (it |Xits Xi¢—1, -, Xi1,Ci) =0



Estimation

Consider the simple model:

@ Pooled OLS (POLS)
@ Fixed Effects (FE)
© First Differencing (FD)

© Random Effects (RE)

Yit
Vit

Xit3 + Vit

Ci + U

10



Pooled OLS (POLS)

@ Same as OLS but with stacked observations

e Consistency ensured by

© Rank condition

© Orthogonality: E£(x,vi) =0

Contemporaneous exogeneity:  E(xj,uz) =0,t=1,...,T

@ Decomposition of error term = inference robust to serial correlation

11



Estimation

Consider the simple model:

© Pooled OLS (POLS)
@ Fixed Effects (FE)
© First Differencing (FD)

© Random Effects (RE)

Yit
Vit

Xit3 + Vit

Ci + U
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Fixed Effects (FE)
Obtain FE estimator in 2 steps:

@ Between equation (j;): average the equation across t —
cross-section

D Sy _ Yoy XieB + G + uie
Yi = — 7 T
= X84 ¢+ 0

@ Within equation (y;;): subtract the between equation from the
original equation to eliminate ¢;
Vie = Vie = Vi) = (Xie = Xi)B + vje — @;
Xit + Uit

13



Fixed Effects (FE)

FE estimator uses pooled OLS for y;; = X;z3 +

Bre = (i i ) : (i i y)

i=1 t=1 i=1 t=1

Conditions for identification

@ Orthogonality: E(X, i) =0, t=1,..., T
@ Rank: rank E(X,X;;) = K
e Condition is violated if x;; has elements that:

@ do not vary over time

@ change over time in the same way — X;: transformation introduces
constant terms

14



FE and orthogonality

@ The key condition for consistency is

E(Xielie) = E(Xipuir) = E[(xie — %i)'uie] = 0

e The first step is possible because &; is equal to 0

@ Includes the following conditions:
E(Xpur) = 0

E()?i-u;t) = E

T ! T /
Es:l Xis Ui | = 25:1 E(Xisuit) -0
T 't T

@ Strict exogeneity!

15



EXAMPLE: union status and wages

Impact of being in the union on log-wages using different panels for US
@ Two approaches:
@ POLS: y; = a + ~yunion; + x;8 + v;

@ FE: y;: = o+ yunion; s + %3 + ¢; + uiz

o Compare estimates — what do we learn?

Dep. variable: Log-wage

Dataset POLS FE
Union status in ...
May CPS, 1974-75 0.19 0.09
LSYM, 1970-78 0.28 0.19
Michigan PSID, 1970-79 0.23 0.14

Note. Adapted from Freeman (1984), “Longitudinal Analyses of the Effects of Trade Union,” Journal of
Labor Economics Vol. 2, No. 1, pp. 1-26. Estimates are calculated using the surveys listed at left. The
cross-section estimates include controls for demographic and human capital variables.

16



APPLICATION: market concentration and airfares

Measure the impact of market concentration on airfares

e N =1,149 U.S. air routes and the years 1997 through 2000

@ y;: is log(fareir) and the key explanatory variable is concen;;, the
concentration ratio for route .

@ Other covariates are year dummies and the time-constant variables
log(dist;) and [log(dist;)]?.

e Note that what we call ¢; Stata refers to as u_i.

17



Dataset

. use airfare

. tab year
1997, 1998, |
1999, 2000 | Freq. Percent Cum.
1997 | 1,149 25.00 25.00
1998 | 1,149 25.00 50.00
1999 | 1,149 25.00 75.00
2000 | 1,149 25.00 100.00
Total | 4,596 100.00
. sum fare concen dist
Variable | Obs Mean Std. Dev. Min Max
fare | 4596 178.7968 74.88151 37 522
concen | 4596 .6101149 .196435 .1605 1
dist | 4596 989.745 611.8315 95 2724
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POLS estimates (with “wrong” standard errors)

. reg 1lfare concen ldist ldistsq y98 y99 y00

Source | SS df MS Number of obs = 4596
t F( 6, 4589) = 523.18

Model | 355.453858 6 59.2423096 Prob > F = 0.0000
Residual | 519.640516 4589 .113236112 R-squared = 0.4062
+ Adj R-squared = 0.4054

Total | 875.094374 4595 .190444913 Root MSE = .33651
1fare | Coef . Std. Err. t P>|t| [95% Conf. Intervall
concen | .3601203 .0300691 11.98 0.000 .3011705 .4190702
ldist | -.9016004 .128273 -7.03 0.000 -1.153077 -.6501235
ldistsq | .1030196 .0097255 10.59 0.000 .0839529 .1220863
y98 | .0211244 .0140419 1.50 0.133 -.0064046 .0486533

y99 | .0378496 .0140413 2.70 0.007 .010322 .0653772

yoo | .09987 .0140432 7.11 0.000 .0723385 .1274015
_cons | 6.209258 .4206247 14.76 0.000 5.384631 7.033884
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POLS estimates (with serial correlation)

. reg lfare concen ldist ldistsq y98 y99 y00, cluster(id)

(Std. Err. adjusted for 1149 clusters in id)

| Robust

1fare | Coef. Std. Err. t P>t [95% Conf. Intervall]
concen | .3601203 .058556 6.15 0.000 .2452315 .4750092
ldist | -.9016004 .2719464 -3.32 0.001 -1.435168 -.3680328
ldistsq | .1030196 .0201602 5.11 0.000 .0634647 .1425745
y98 | .0211244 .0041474 5.09 0.000 .0129871 .0292617

y99 | .0378496 .0051795 7.31 0.000 .0276872 .048012

yoo | .09987 .0056469 17.69 0.000 .0887906 .1109493
_cons | 6.209258 .9117551 6.81 0.000 4.420364 7.998151
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FE estimates

. xtreg lfare concen ldist ldistsq y98 y99 y00, fe cluster(id)

(Std. Err. adjusted for 1149 clusters in id)

| Robust
1fare | Coef. Std. Err. t P>t [95% Conf. Interval]
concen | .168859 .0494587 3.41 0.001 .0718194 .2658985
ldist | (dropped)
ldistsq | (dropped)
y98 | .0228328 .004163 5.48 0.000 .0146649 .0310007
y99 | .0363819 .0051275 7.10 0.000 .0263215 .0464422
yoo | 0977717 .0055054 17.76 0.000 .0869698 .1085735
_cons | 4.953331 .0296765 166.91 0.000 4.895104 5.011657
sigma_u | .43389176
sigma_e | .10651186
rho | .94316439 (fraction of variance due to u_i)
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FE estimates: non-linear effects

o Let the effect of concen depend on route distance.
. sum ldist if yO0O

Variable | Obs Mean Std. Dev. Min
_____________ +_________________

Max

ldist | 1149 6.696482 .6595331  4.5563877

. gen ldistconcen = (ldist - 6.7)*concen

7.909857
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FE estimates: non-linear effects

. xtreg lfare concen ldistconcen y98 y99 y00, fe cluster(id)

Fixed-effects (within) regression Number of obs 4596
Group variable: id Number of groups = 1149

(Std. Err. adjusted for 1149 clusters in id)

| Robust
1fare | Coef. Std. Err. t P>|t| [95% Conf. Intervall
concen | .1652538 .0482782 3.42 0.001 .0705304 .2599771
ldistconcen | -.2498619 .0828545 -3.02 0.003 -.4124251 -.0872987
y98 | .0230874 .0041459 5.57 0.000 .014953 .0312218
y99 | .0355923 .0051452 6.92 0.000 .0254972 .0456874
y0o | .0975745 .0054655 17.85 0.000 .0868511 .1082979
_cons | 4.93797 .0317998 155.28 0.000 4.875578 5.000362
sigma_u | .50598296
sigma_e | .10605257

rho | .95791776 (fraction of variance due to u_i)
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From FE to TWFE

Many applications of FE models use Two Way Fixed Effects (TWFE)

@ Consider this example:

Yit = adis + Tt + ¢ + Uit

e dj is the time-varying variable of interest

e 7: and ¢; are the time-specific FE and the individual-specific FE

@ 7 and ¢; can also be captured by adding indicator variables for each
period and individual

o Replicates FE but with T computation (many parameters to estimate)
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APPLICATION: the costs of low birth weight

How can we identify the causal impact of low birth weight?

@ Cross-sectional regression would fail orthogonality
hi = a + fbw; + Xiy + €;
e bw; is birth weight of child i
e h; is an indicator of health

@ We cannot use panel data since you are born only once

25



APPLICATION: the costs of low birth weight

How can we identify the causal impact of low birth weight?

@ Cross-sectional regression would fail orthogonality

hi = a + fbw; + Xiy + €;

e bw; is birth weight of child i
e h; is an indicator of health

@ We cannot use panel data since you are born only once

@ Can we use panel data methods applied to non-panel data?

o Almond et al. QJE (2005) = effect of birth weight on child health
applying FE estimator to non-panel data — how?
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Twins to identify the causal effect (Almond et al.

QJE 2005)

@ Standard identification problem:

where h;; is the underlying health of newborn j for mother i, bw;; is
birth weight, X; is a vector of mother-specific observable determi-
nants of health (e.g., race, age, education), a; reflects mother-specific
unobservable determinants of health (e.g., genetic factors), and g;
represents other newborn-specific idiosyncratic factors, assumed to
be independent of all observable and unobservable factors.

@ Using twins, we can apply FE to eliminate a;

e Time dimension is replaced by the number of siblings = observe
multiple birth weight per mother

26



Comparison of estimates across POLS and FE

OLS is over-estimating the impact on hospital costs — why?

TABLE III
PooLED OLS AND TwINS FIXED EFFECTS ESTIMATES OF THE EFFECT OF BIRTH WEIGHT
Including congenital Excluding congenital
anomalies anomalies
Birth weight
coefficient Pooled OLS Fixed effects Pooled OLS Fixed effects
Hospital costs —-29.95 —-4.93 — —
(in 2000 dollars) (0.84) (0.44) — —
[—0.506] [—0.083] — —
Adj. R? 0.256 0.796 — —
Sample size 44,410 44,410 — -
Mortality, 1-year —0.1168 —0.0222 —0.1069 —0.0082
(per 1000 births) (0.0016) (0.0016) (0.0017) (0.0012)
[—0.412] [—0.078] [—0.377] [—0.029]
Adj. R? 0.169 0.585 0.164 0.629

Sample size 189,036 189,036 183,727 183,727
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Comparison of estimates across POLS and FE

Similar when looking at dummy variables instead of bw;;

(Year 2000) Dollars

180000

160000 4 ——6— Singletons

140000 — @ — Pooled Twins

120000 - — @ — Fixed Effect

100000

80000 -

60000 -

40000

20000 A

0
300 800 1300 1800 2300 2800
Birth weight

FIGURE Ia
Hospital Costs and Birth Weight
Note: 1995-2000 NY/NdJ Hospital Discharge Microdata.
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Another TWFE example: difference-in-differences

Example: introduction of a policy restricted to some regions of the country

Time t=20 t=1
Regions affected No region Northern Mexico + Veracruz

29



Difference-in-Differences (DiD)

A random sample of individuals across the country is observed in two
periods t = 0,1
yit = B+ aidit + vir
J {1 if affected by policy at time t
it —

0 otherwise
@ DiD estimator applies a standard TWFE error decomposition
Vie = Tt + G + Ujt
e ¢;: unobservable individual fixed effect

e Ty aggregate time effect

e uj: idiosynchratic error term

30



Identification

Compute E[yi|d;, t] for all groups and for each period t = 0,1
o Elyi|d;, t] for d; = 1:
,B—i-E[C,"d,':1]+7‘t0+E[U,'tO‘d,':1] ift=0
6+ E[Oz,'|d,' = 1] + E[C,'|d,' = ].] + Ty + E[u,-t1|d,- = 1] ift=1
] E[y,-t|d,', t] for d; = 0:

B+ Elcildi = 0] + 7¢, + E[uir,|di =0] ift =0
B8+ E[C,'|d,‘ = 0] + 7 + E[U,‘tlyd,' = 0] ift=1
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Identification

Randomization hypothesis holds in first differences:

Elvit, — Vit|di = 1] = E[vit, — Vito|di = 0] = E[vit, — Vigo]

e Elyi|d;, t] for d; = 1:

,8+E[Ci|d,':1]+7'to+E[U,‘to] ift=0
B—I— E[Oz,"d,' = ].] + E[C,"d,' = 1] + 7y + E[u,-tl] ift=1

] E[y;t|d,', t] for d; = 0:

ﬂ—{—E[C,'|d,' :0]—|—7't0 —|—E[u,-to] ift=20
6+E[C,"d,' :0]+Tt1 +E[U,'t1] ift=1

32



Identification: first and second differences

@ 1st: cancels out time-invariant characteristics

Ayr = E[y,'t‘d,' =1,t= 1] — E[y,-t]d,' =1,t= 0]
= E[af|di = 1] + (Ttl - 7-fo) + E[uft1 - uito]

Ayc = Elyildi =0,t=1] - E[y;|d; =0,t = 0]

= (Ttl - 7—1“0) + E[uifl - uito]

@ 2nd: cancels out time effects and identifies ATT

Ayt — Ayc = Elaj|di = 1] = oATT

33



What is DiD indentifying?

Excess outcome change for the treated as compared to the non-treated

Treatment
y
.----C
/ B
Control
Pre- Post-

Time
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Estimating DiD

@ Use two dummy variables = TWFE

@ Group identifier (d;): 1 if individual 7 lives in affected regions
(independently from time), 0 otherwise

@ Post (T;): 1if observation refers to t = 1, 0 otherwise

@ Estimate the following with OLS:

yie = ag+{oadi + o Ty + azd; - Tt} + XieS + Vi

e a7 = difference in means across all periods between affected and
non-affected regions

e an = difference in means between t =0and t =1

e a3 = DiD estimate

35



Violations

© Ashenfelter’s dip: ujy, — uj, is not unrelated to d

E[aPP] = oaATT 4+ E [ugy, — ujey|die, = 1] +
—E [ujt, — uity|dity, = 0]

e Example: enrolment in a training programme is more likely if a
temporary dip in earnings occurs just before the programme
@ Lack of common trend: aggregate time effects are different

E[aPP] = oATT 4 (114 — T14y) — (To.ty — Totg)

© Composition changes: effects driven by before-after changes in the
composition of respondents

36



APPLICATION: Card and Krueger (1994)

What is the effect of minimum wage on employment?

On April 1, 1992, New Jersey’s minimum wage rose from $4.25 to $5.05 per
hour. To evaluate the impact of the law we surveyed 410 fast-food restaurants in
New Jersey and eastern Pennsylvania before and after the rise. Comparisons of
employment growth at stores in New Jersey and Pennsylvania (where the
minimum wage was constant) provide simple estimates of the effect of the higher
minimum wage. We also compare employment changes at stores in New Jersey
that were initially paying high wages (above 35) to the changes at lower-wage
stores. We find no indication that the rise in the minimum wage reduced
employment. (JEL J30, J23)

@ Minimum wage change in one state (NJ) between t =0 and t =1
e Compare with neighbouring state (PA) for comparable employment

@ Assumptions are valid?
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February 1992

AN AN

Wage Range

Bl New Jersey PZZ4 Pennsylvanio

4.25 4.35 4,45 455 4.65 475 485 495 505 515 525 535 545 555

35
304

Wage range at t = 0 (pre)

5
[

T T
wn o n =]
- ~ - -

$9404S JO juedlsd
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Wage range at t = 1 (post)

Percent of Stores

November 1992

90

-
o
1

~
o
1

o
o
1

504

NN

Aol 4 _ 0 S—
425 4.35 4.45 455 465 4.75 485 4.95 5.05 5.15 525 535 5.45 555
Wage Range

Bl New Jersey PZZ4 Pennsylvanio
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DiD estimates of the effect of minimum wage

@ Columns (i) and (ii): 1st differences
@ Column (iii): 2nd difference — ATT estimate corresponding to a3 in
this OLS regression

Yie = ap + {al NJ; + as Post: + asNJ; - POStt} + Xit8 + Vie

Mean change in outcome

NJ PA NJ-PA
Outcome measure 0] (ii) (iii)
Store Characteristics:
1. Fraction full-time workers® (percentage) 264 —465 7.29
(L71)  (3.80) 4.17)
2. Number of hours open per weekday =0.00 0.11 =0.11
0.06)  (0.08) (0.10)
3. Number of cash registers -0.04 0.13 -0.17
0.04) (010 (0.11)
4. Number of cash registers open -003 -020 0.17

at 11:00 A.m. (0.05)  (0.08) (0.10)



TWFE and parallel trends

e Consider 2x2 setting = DiD formula:
a2 = {E[Yy|Post] — E[Yr|Pre]} — {E[Yc|Post] — E[Yc|Pre]}
e Y7 (group affected) and Y¢ (group not affected)

@ Rewrite it using potential outcomes

a®? = [E[Y}|Post] — E[Y?|Post]} +
ATT
{E[Y?|Post] — E[Y}|Pre]} — {E[Y2|Post] — E[V¢|Pre]}

Non-parallel trends bias (i.e., selection bias)

@ To cancel out the second term = parallel trends
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Special case: staggered rollout

Intervention dj; is adopted at multiple times t across multiple groups

Time t=20 t=1 t =2
Regions affected No region Northern Mexico Northern Mexico
+ Veracruz + Veracruz +

Baja California +
Pacific Coast

41



Special case: staggered rollout

@ DiD extends to TWFE =

Yie = adit + 7 + 0 + €t

@ The design in the example considers three different groups:
© Regions that are never affected: U
© Regions affected early: k
© Regions affected later: /

@ Many comparisons are possible — Example: DiD for k and U

522 — [ylfost(k) . }_/Ifre(k)] . yZOSt(k) _ yzre(k)]

@ Under what conditions will o equal the ATT?

(1)

42



TWEFE: early versus never affected

A. Early Group vs. Untreated Group

Y I

A

A AdA
AddAd

ahd A

_—

PRE(K)

POST(k)

Time

43



TWEFE: late verus never affected

B. Late Group vs. Untreated Group

POST())

Time
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TWEFE: early versus late before t*

8_

30
I

20
!

10
|

C. Early Group vs. Late Group, before t*,

PRE(k)

MID(k,])
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TWEFE: early versus late after t*

D. Late Group vs. Early Group, after t*

MID(k,])

POST()

Time

46



Goodman-Bacon decomposition

Consider the following 2x2 comparisons:

e 0277 = affected to never affected

° 52X2’k = affected early to affected later before t*

52X2/ = affected early to affected later after t*

Goodman-Bacon decomposition: « in equation (1) calculates a
weighted average of all these 2x2 comparisons

STWFE _ Z Sku52X2 + Z Zskl [uk/5if2’k +( Mk/)52le

k£U k#U 1>k

o All weights are positive
e s captures variances

e /i captures the relevance of comparisons between affected groups
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Goodman-Bacon decomposition

@ Substitute potential outcomes for all the Y values

68 = ATTiPost + AY(Post(k), Pre) — AY](Post(k), Pre)
622 = ATTW(MID) + AYQ(MID, Pre) — AY2(MID, Pre)

622 = ATT/(Post(l)) + AY?(Post(l), MID) — AY?(Post(l), MID)
—(ATTy(Post) — ATT,(MID))

o Key takeaways:

o All terms are a composition of ATT and parallel trend biases

o 672 includes an additional term = heterogeneity bias
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Interpreting TWFE estimates

STWFE

The estimator is the sum of three components:

§TWFE — VWATT + VWPT — AATT

@ ATT (VW stands for variance weighted)

@ Differences in parallel trends
© Evolution of ATT over time
o AATT = 0: ATT is constant over time = fine for TWFE

e AATT > 0: ATT is dynamic and introduces a bias = attenuation bias
or even change in sign!
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Estimation

Consider the simple model:
Yit
Vit
© Pooled OLS (POLS)
@ Fixed Effects (FE)
© First Differencing (FD)

© Random Effects (RE)

Xit3 + Vit

Ci + U
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First-differencing (FD) estimation

@ Removes ¢; by differencing adjacent observations:

Ay = Axie S+ Aup, t=2,..., T (weloset = 1)

@ For consistency:

© Orthogonality: E(uj|xi,¢;))=0,t=1,.., T
@ Rank: rank E(AX/AX;) = K

@ FE and FD are the same when T =2
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FE estimates

. xtreg lfare concen ldist ldistsq y98 y99 y00, fe cluster(id)

(Std. Err. adjusted for 1149 clusters in id)

| Robust
1fare | Coef. Std. Err. t P>t [95% Conf. Interval]
concen | .168859 .0494587 3.41 0.001 .0718194 .2658985
ldist | (dropped)
ldistsq | (dropped)
y98 | .0228328 .004163 5.48 0.000 .0146649 .0310007
y99 | .0363819 .0051275 7.10 0.000 .0263215 .0464422
yoo | 0977717 .0055054 17.76 0.000 .0869698 .1085735
_cons | 4.953331 .0296765 166.91 0.000 4.895104 5.011657
sigma_u | .43389176
sigma_e | .10651186
rho | .94316439 (fraction of variance due to u_i)
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FD estimates

. reg D.(1lfare concen y98 y99 y00), nocons tsscons cluster(id)

Linear regression

Number of obs
F( 3, 1148)
Prob > F
R-squared
Root MSE

= 3447
= 26.29
= 0.0000
= 0.0382
= .12508

(Std. Err. adjusted for 1149 clusters in id)

| Robust

D.1lfare | Coef. Std. Err. t P>t [95% Conf. Intervall

concen |
D1. | .1759764 .0430367 4.09 0.000 .0915371 .2604158

|

y98 |
D1. | .0227692 .0041573 5.48 0.000 .0146124 .030926

|

y99 |
Di. | .0364365 .005153 7.07 0.000 .026326 .0465469

|

yoo |
D1. | .0978497 .0055468 17.64 0.000 .0869666 .1087328

@ All estimates are similar to FE
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Estimation

Consider the simple model:

© Pooled OLS (POLS)
@ Fixed Effects (FE)
© First Differencing (FD)

© Random Effects (RE)

Yit
Vit

Xitf3 + Vit

Ci + U
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Random effects and Generalized Least Squares

Random effects make use of Generalized Least Squares (GLS)

@ Exploits the correlation structure across multiple equations:

© unconditional variances across equations are different

@ unconditional covariances across equations are non-zero

e Equations can represent time = in the population, each period
1,.., T is one equation
yi = XiB + u;

e yiis T x1
OX,'iSTXK
e ujisTx1

55



Variance-covariance (VCV) matrix of u;

Unconditional variance-covariance matrix plays a key role in GLS:

2
01 012 - 016G
2
B , 012 03 't 026
W= E(uju;) = | . .
2
016 026 " Og

e Properties: W~1/2 is a symmetric nonsingular matrix such that
° W—1/2 W—1/2 = w1
o WY2WW—12 =g
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GLS transformation and estimator

If W is known, we can multiply y; by W—1/2

W*I/Zy,- = W*1/2X,-ﬁ + W71/2u,'
yi = XiB+uyj (2)

e Why? = remove correlations in errors

E(uiu?y = W Y2Euu))W=2 =14

@ GLS estimator is the POLS estimator of equation (2)

N
BGLS — <Z X:k/x;k) (Z X*/ *>
i=1

N
— (Z x;vv—lx,-> (Z x;W—ly,->
i=1 i=1
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GLS and assumptions

yi = XiB+uy; (3)

© Orthogonality: E(X!W~1u;) =0
@ Rank: rank E(XiW™IX;) = K

If W is not known = feasible GLS procedure
© Assume initial W = apply GLS
@ Use results to estimate W = apply GLS

© lterate step 2 until GLS estimates are stable
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Random Effects

For a random draw i from the population
Yie = XieB+ vie
Vie = G+ Uit
@ Orthogonality

E(u,'t’X,'l,X,'Q,...,X,'T,C,') = 0, t:1,...,T
E(cilxi1, xi2, ...,xit) = E(c)

e Rank
o W is nonsingular and E(X:W~!X;) nonsingular.

e non-singularity means in practice that the matrices are invertible.
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EXAMPLE: W without serial correlation

o Consider the simplest case:

Var(up) = o2, t=1,..,T
Cov(ujt,us) = 0,t#s

@ From the error decomposition, we can write:

Var(vi)) = Var(c + uz) = 02 + 02
Cov(vit,vis) = Cov(ci+ ujt, ci + ujs)
= Var(c¢) + Cov(ci, uis) + Cov(uit, ¢i) + Cov(uje, ujs)

2

g O‘C
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EXAMPLE: W without serial correlation

@ The matrix W can be written as:

2 2 2 2 2
O-C + UU UC UC UC
o;  octou oc
W = : . .
: K : o2
2
o¢ o octo,  oc
0(2: 0(2: Ug 02 +o
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Estimator of 02 and o2

Starting point = POLS = use residuals v;; to estimate both

© How to estimate 027
e Since vj; — V; = uj; — 0;, we can write:

2

Var(vip — v;) = Var(up — ;) = 02 + 0—7‘_’ — 2Cov(ujt, ;)
2 2
2 Oy Oy
= —_— 2—
Tyt T T
T-1
_ 2
= JuiT
1 Var(vip — v;) = o2

© How to estimate 027

e Easy to compute because Cov(v;, vis) = 02 (see previous slide)

o Breusch-Pagan test: test whether Hy: 02 =0

62



RE estimator

@ Use initial W

@ Apply FGLS estimator as RE estimator:

N
Avar(Bre) = (Zx;v\/—lx,-) <Zx’ W10,0/W x,-)
i=1

N -1
(Z xj.v“v—lx,->
i=1

© Use new residuals to compute a new estimate of W

@ Repeat steps 2-3 until convergence
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Application: market concentration and airfares

e N =1,149 U.S. air routes and the years 1997 through 2000
e yir = log(farejt)
@ key explanatory variable = concenj; (concentration ratio for route i)

. use airfare

. tab year

1997, 1998, |

1999, 2000 | Freq. Percent Cum.
1997 | 1,149 25.00 25.00
1998 | 1,149 25.00 50.00
1999 | 1,149 25.00 75.00
2000 | 1,149 25.00 100.00

Total | 4,596 100.00

. sum fare concen dist

Variable | Obs Mean Std. Dev. Min Max
fare | 4596 178.7968 74.88151 37 522
concen | 4596 .6101149 .196435 .1605 1
dist | 4596 989.745 611.8315 95 2724



POLS estimates

. reg lfare concen ldist ldistsq y98 y99 y00, cluster(id)

(Std. Err. adjusted for 1149 clusters in id)

| Robust

1fare | Coef. Std. Err. t P>t [95% Conf. Intervall]
concen | .3601203 .058556 6.15 0.000 .2452315 .4750092
ldist | -.9016004 .2719464 -3.32 0.001 -1.435168 -.3680328
ldistsq | .1030196 .0201602 5.11 0.000 .0634647 .1425745
y98 | .0211244 .0041474 5.09 0.000 .0129871 .0292617

y99 | .0378496 .0051795 7.31 0.000 .0276872 .048012

yoo | .09987 .0056469 17.69 0.000 .0887906 .1109493
_cons | 6.209258 .9117551 6.81 0.000 4.420364 7.998151
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FE estimates

. xtreg lfare concen ldist ldistsq y98 y99 y00, fe cluster(id)

(Std. Err. adjusted for 1149 clusters in id)

| Robust
1fare | Coef. Std. Err. t P>t [95% Conf. Interval]
concen | .168859 .0494587 3.41 0.001 .0718194 .2658985
ldist | (dropped)
ldistsq | (dropped)
y98 | .0228328 .004163 5.48 0.000 .0146649 .0310007
y99 | .0363819 .0051275 7.10 0.000 .0263215 .0464422
yoo | .097TT1T .0055054 17.76 0.000 .0869698 .1085735
_cons | 4.953331 .0296765 166.91 0.000 4.895104 5.0115657
sigma_u | .43389176
sigma_e | .10651186
rho | .94316439 (fraction of variance due to u_i)

Note that what we call ¢; Stata refers to as u_i.
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RE estimates

. xtreg lfare concen ldist ldistsq y98 y99 y00, re cluster(id)

(Std. Err. adjusted for 1149 clusters in id)

| Robust
1fare | Coef. Std. Err. z P>|z| [95% Conf. Intervall
concen | .2089935 .0422459 4.95 0.000 .126193 .2917939
ldist | -.8520921 .2720902 -3.13 0.002 -1.385379 -.3188051
ldistsq | .0974604 .0201417 4.84 0.000 .0579833 .1369375
y98 | .0224743 .0041461 5.42 0.000 .014348 .0306005
y99 | .0366898 .0051318 7.15 0.000 .0266317 .046748
yoo | .098212 .0055241 17.78 0.000 .0873849 .109039
_cons | 6.222005 .9144067 6.80 0.000 4.429801 8.014209
sigma_u | .31933841
sigma_e | .10651186
rho | .89988885 (fraction of variance due to u_i)

@ Notice that the RE and POLS coefficients on the time-constant
distance variables are pretty similar, something that often occurs.



RE estimates: omitting distance

. xtreg lfare concen y98 y99 y00, re cluster(id)

Random-effects GLS regression Number of obs = 4596

Group variable: id Number of groups = 1149

(Std. Err. adjusted for 1149 clusters in id)

| Robust

lfare | Coef.  Std. Err. z P>|z]| [95% Conf. Intervall

concen | .0468181 .0427562 1.09 0.274 -.0369826 .1306188

y98 | .0239229  .0041907 5.71  0.000 .0157093 .0321364

y99 | .0354453  .0051678 6.86  0.000 .0253167 .045574

yoo | .0964328  .0055197 17.47  0.000 .0856144 .1072511

_cons | 5.028086  .0285248 176.27  0.000 4.972178 5.083993
sigma_u | .40942871
sigma_e | .10651186

rho | .93661309  (fraction of variance due to u_i)

@ Estimate is much smaller than FE estimate

e Can be very harmful to omit time-constant variables in RE
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