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 Econometrica, Vol. 62, No. 2 (March, 1994), 467-475

 IDENTIFICATION AND ESTIMATION OF LOCAL AVERAGE
 TREATMENT EFFECTS1

 BY GUIDO W. IMBENS AND JOSHUA D. ANGRIST

 1. INTRODUCTION

 RANDOM ASSIGNMENT OF TREATMENT and concurrent data collection on treatment and
 control groups is the norm in medical evaluation research. In contrast, the use of random
 assignment to evaluate social programs remains controversial. Following criticism of
 parametric evaluation models (e.g., Lalonde (1986)), econometric research has been
 geared towards establishing conditions that guarantee nonparametric identification of
 treatment effects in observational studies, i.e. identification without relying on functional
 form restrictions or distributional assumptions. The focus has been on identification of
 average treatment effects in a population of interest, or on the average effect for the
 subpopulation that is treated. The conditions required to nonparametrically identify
 these parameters can be restrictive, however, and the derived identification results
 fragile. In particular, results in Chamberlain (1986), Manski (1990), Heckman (1990), and
 Angrist and Imbens (1991) require that there be some subpopulation for whom the
 probability of treatment is zero, at least in the limit.

 The purpose of this paper is to show that even when there is no subpopulation
 available for whom the probability of treatment is zero, we can still identify an average
 treatment effect of interest under mild restrictions satisfied in a wide range of models
 and circumstances. We call this a local average treatment effect (LATE). Examples of
 problems where the local average treatment effect is identified include latent index
 models and evaluations based on natural experiments such as those studied by Angrist
 (1990) and Angrist and Krueger (1991). LATE is the average treatment effect for
 individuals whose treatment status is influenced by changing an exogenous regressor that
 satisfies an exclusion restriction.

 2. IDENTIFICATION OF CAUSAL EFFECTS

 The framework we use is essentially similar to that outlined by Rubin (1974, 1990),
 Heckman (1990), and described in our previous paper on identification of treatment
 effects (Angrist and Imbens (1991)). It defines causal effects in terms of potential
 outcomes or counterfactuals rather than in terms of the parameters of a regression
 model. Let YV(0) be the response without the treatment or program for individual i. Yi(1)
 is the response with treatment. Di is an indicator of treatment. We observe Di and
 Yi = Y1(Di) = Di * Yi(1) + (1 - Di) - Y,(0) for a random sample of individuals. The individ-
 ual treatment effect, or causal effect, is Yi(1) - Y1(0) but since Yi(1) and Yj(0) are never
 observed for the same individual we are forced to rely on comparisons between different
 individuals and estimate average treatment effects.

 The solution to the identification problem dominating the evaluation of medical
 treatments is random assignment to treatment and control groups. This guarantees that
 E[Yi(j)IDi = 0] = E[Yi(j)IDi = 1] for j = 0,1. In that case an unbiased estimator for the

 1 We are grateful to Gary Chamberlain, Larry Katz, Don Rubin, Geert Ridder, Jim Heckman,
 Charles Manski, seminar participants at Harvard/MIT, New York University, the Institute for
 Research on Poverty at the University of Wisconsin, and the University of Chicago, two anonymous
 referees and a co-editor for comments and suggestions, and to the NSF for financial support under
 Grants SES9122477 and SES9122627.
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 468 G. W. IMBENS AND J. D. ANGRIST

 average treatment effect, E[Y(1) -Yi(O)1, is available in the difference of the
 treatment/control averages, EDiYi/EDi - M(1 - Di)Y/E(1 - Di).

 In the evaluation of social programs, researchers have often relied on instrumental
 variables strategies to identify treatment effects. We define an instrumental variable, Zi,
 to be a variable independent of the responses Yi(O) and Yi(1), and correlated with the
 participation indicator Di. In order to formalize this, let 3 be the support of Zi. Define
 for each z E 3 a random variable Di(z).2 Di(z) is equal to zero if an individual would
 not participate if he or she had the instrument Zi equal to z, and it is equal to one if
 that individual would participate with Z = z. Clearly, we cannot observe the entire set of
 potential participation indicators {Di(z)tz E B3}, but we can think about them in the same
 way we think about Yi(O) and Yi(1) even though they are not observed. We observe
 (Zi, Di, Y) for a random sample of individuals, where Di = Di(Zi), the participation
 indicator associated with Zi, and Yi = Yi(Di), the response variable given the participa-
 tion status Di. The formal condition defining an instrument is the following.

 CONDITION 1 (Existence of Instruments): Let Z be a random variable such that (i) for
 all we 3 the triple (Yi(O), Yi(l), Di(w)) is jointly independent of Zi, and, (ii) P(w)=
 E[Di Zi = wI is a nontrivial function of w.

 Part (ii) of Condition 1 is testable in a given application. Part (i) is similar to an
 exclusion restriction in a regression model. It is not testable and has to be considered on
 a case by case basis. Note that random assignment of Zi does not guarantee that part (i)
 is satisfied because although random assignment implies that Zi is independent of
 Di(w), it does not imply that Zi is independent of Yi(O), Yi(1). In a related paper
 (Angrist, Imbens, and Rubin (1993)), we discuss conditions similar to this in great detail,
 and investigate the implications of violations of these conditions.

 In econometric program evaluation, linear latent index models are often employed
 (see, for example, Heckman and Robb (1985), and Heckman and Hotz (1989)). In these
 models, the participation decision is typically modeled by a latent index

 I = Yo + Zi 1+Vi

 with the observed participation indicator, Di, related to the unobserved latent index, D>,
 by

 {1if D' > 0,
 Di loi= D*0 ifD>?O .

 The response, Yi, is related to the treatment via the equation

 Yi=po+Di,l3, +?,.

 In this notation the counterfactuals are Yi(O) = p30 + Ei, Yi(1) = p0 + p1 + Ei, and Di(z)=
 1{yo + z - y1 + vi > 01 for z E 3, where 1{ }1 is the indicator function. In this regression
 framework Condition 1 is satisfied if Zi is independent of ri and v,. The advantage of
 our setup is that it allows us to avoid the functional form and distributional assumptions
 inherent in these models.

 Chamberlain (1986), Heckman (1990), and Angrist and Imbens (1991) have each noted
 that Condition 1 by itself is not enough to identify any average treatment effect.3 To see

 2 The Dj(z) notation was suggested to us by Gary Chamberlain.
 3 Manski (1990) shows conditions similar to Condition 1 are informative in the sense that they

 -sharpen bounds on population averages of bounded functions of the treatment effect. However, we
 focus on (point) identification of average treatment effects without restrictions on the range of
 outcomes.
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 LOCAL AVERAGE TREATMENT EFFECrS 469

 this, compare the expectation E[Yi Zi = zI for two points of support, z and w, with
 P(z) > P(w):4

 E[YjjZj = Z -E[YIjZj = w]

 E E[Di(z) * Yj(1) + (1 -Di(z)) * Yi(O)IZ = z]

 -E [ Di(w) - Y1(1) + (1 -Di(w)) - Y(O)IZZ =w

 Using the independence in Condition 1, this is equal to

 (1) E [(Di(z) -Di(w)) - (Yi(l) - Yi())]

 -Pr [Di(z) - Di(w) = 1] E[Y,(1) - Y;(0)IDi(z) - Di(w) = 1]

 - Pr [Di(z) - Di(w) = - 1]

 . E[Y(1) - Y(0)JDi(z) -Di(w) -1].
 Equation (1) highlights an identification problem arising in the use of IV to estimate
 average treatment effects. The difference in equation (1) can be zero or even negative
 despite a strictly positive causal effect of D on Y for all individuals. For example, if

 Pr[ Di(z) - Di(w) =1]

 1E E[Y(1) - Y(O)IJDi(z) - Di(w) = i]
 =Pr[Di(z) -Di(w) = 1] * E[Y(1) - Yi(O)IDi(z) -Di(w) - -1]

 the difference is zero. Intuitively the problem here is that the treatment effect for those
 who shift from nonparticipation to participation when Z is switched from z to w can be
 cancelled out by the treatment effect of those who shift from participation to nonpartici-
 pation.

 One commonly invoked condition that prevents this is the assumption of a constant
 treatment effect, a = Y1(1) - Y(0), for all individuals in the population. Then E[YiIZi=
 zI -E[YiZi = wI is equal to a [P(z) -P(w], and a is clearly identified. A second
 approach is to assume the existence of a value of- the instrument, w, such that the
 probability of participation conditional on that value, P(w), is equal to zero. Then
 Pr[Di(z)-Di(w)= -11=0, and the difference E[YiIZi=zI-E[YiIZi=wI is equal to
 P(z) * E[Yi(l) - Y(0)IDi(z) = 11. In this case the average treatment effect for the treated
 is identified. This type of condition is explored in Heckman (1990) and Angrist and
 Imbens (1991). Below we present a third assumption that solves the identification
 problem by preventing shifts in participation status in the opposite direction.

 CONDITION 2 (Monotonicity): For all z, w E 3, either Di(z) > Di(w) for all i, or
 Di(z) 6 Di(w) for all i.

 This condition ensures that the instrument affects the participation or selection
 decision in a monotone way. That is, if people are more likely, on average, to participate
 given Z = w than given Z = z, then anyone who would participate given Z = z must also
 participate given Z = w. Similar to Condition 1, this condition is fundamentally
 untestable, and its validity has to be argued in the context of a particular application (see
 Section 4). Note that in the linear latent index model discussed above, Condition 2 is
 automatically satisfied.

 4 We assume that these conditional expectations are finite.

This content downloaded from 
������������193.136.112.70 on Thu, 07 Apr 2022 16:09:35 UTC������������� 

All use subject to https://about.jstor.org/terms



 470 G. W. IMBENS AND J. D. ANGRIST

 Our main result is the following:

 THEOREM 1: If Conditions 1 and 2 hold, then we can identify the following average
 treatment effect:

 aZ,W =E[Yi(l) - Yi(0)IDi(z) *&Di(w)]

 from the joint distribution of Y, D, and Z, for all z and w in the support of Z such that
 E[YiIZi = z] and E[YiZi= w] are finite, and P(z) 0 P(w).

 PROOF: Let Condition 2 be satisfied with Di(z) > Di(w). Then Pr [Di(z) - Di(w)
 -1] = 0 which implies that the second term in (1) is equal to zero, and

 E[YiZi = z ] -E[YilZi w=w]

 = (P(z) - P(w)) E[Yi(l) - Yi(0)Di(z) - Di(w) = 1].

 Dividing both sides by P(z) - P(w) shows that the local average treatment effect can be
 expressed in terms of moments of the joint distribution of (Y, D, Z). Q.E.D.

 The local average treatment effect is analogous to a regression coefficient estimated in
 linear models with individual effects using panel data. In models with fixed effects, the
 data are only informative about the impact of binary regressors on individuals for whom
 the value of the regressor changes over the period of observation. Under Theorem 1 the
 treatment effect identified is an average for those who can be induced to change
 participation status by a change in the instrument.

 3. INSTRUMENTAL VARIABLES ESTIMATION

 Theorem 1 implies that local average treatment effects can be estimated by comparing
 the average of outcome Y and treatment D at two different values of the instrument Z.
 This is exactly what the instrumental variables approach estimates in the case of a binary
 instrument. One way to exploit a multi-valued instrument is to estimate the ratio of the
 covariance of Y and some scalar function g(Z), and the covariance of D and g(Z). If Z
 is a scalar random variable, then the choice g(z) = z leads to the standard IV estimator.
 If Z is a vector, g(z) is often an estimate of P(z). To guarantee that the IV estimand,
 CoV (Y, g(Z))/Cov (D, g(Z)), is a weighted average of local average treatment effects
 with nonnegative weights, we impose the following condition on the function g(z):

 CONDITION 3: g(z) is a function from the support of Z to 91 such that
 (i) either for all z,we,B, Pr(z)<P(w) implies g(z)Sg(w), or, for all z,we3,

 P(z) < P(w) implies g(z) > g(w);
 (ii) Cov(D, g (Z)) o O.

 There are three important cases where Condition 3(i) is immediately satisfied. The
 first is the basis of Theorem 1. If Z is binary, it is clear that P(z) is either increasing or
 decreasing in g(z). The second case is where g(z) = E[DilZi = z] = P(z). For example,
 in the linear latent index model, g(z) = E[Di Zi = z] = Pr(y0 + y1z + v > 0). The third
 case is where Z is a scalar random variable, and both g(z) and P(z) are monotone in z.

 The following theorem gives the relation between IV estimators and the local average
 treatment effects defined in the previous section. To avoid additional notation and
 smoothness assumptions, and because the examples in Section 4 all involve discrete
 instruments, it is formulated in terms of instruments with discrete support.
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 LOCAL AVERAGE TREATMENT EFFECTS 471

 THEOREM 2: Suppose that Conditions 1, 2, and 3 are satisfied. Let Z be a discrete

 random variable with support {zo, Z1. . . X ZK}, ordered in such a way that if I < m then
 P(zl) <P(zm). Then, if Cov(D, g(Z)) = 0, the IV estimator for the effect of D on Yusing
 g(Z) as an instrument estimates

 K

 agV= Cov(Y, g(Z))/Cov(D, g(Z)) = E Ak *aZkZk,
 k=1

 with weights

 (2) Ak = ((P(Zk) -P(Zk- )) E1=kTl (g(zl) E[g(Z)])
 (2) yK= l(P (zm) P (zm - - EIv ((zi) -E[9(Z)])

 where rrk = Pr(Z = Zk) and a is the local average treament effect E[Yi(l) -
 Y(O)lDi(zk) = 1, Di(zk 1)= 01. The weights Ak are nonnegative and add up to one.

 PROOF: See Appendix.

 The second part of this section analyzes the asymptotic distribution of the IV
 estimator. We consider here the case where g(z) is a known function of z. In the
 Appendix we derive the asymptotic distribution for the case where g( ) depends on an
 unknown parameter which is estimated jointly with the average treatment effect aiV.
 That case includes two-stage procedures where in the first stage the conditional expecta-
 tion of D given Z is estimated.

 THEOREM 3: Let (Yi, Di, Zi)N 1 be N independent, identically distributed random vari-
 ables, and g(*) a function from the support of Z to 9t such that CoV (D, g(Z)) # 0, and let
 aIV be the instrumental variables estimator, given by

 g

 ag Cov(Y, g(Z))/Cov(D, g(Z)) = E- 1g(Z.).(yY)

 where Y = YL 14JN and D = EL 1Di/N. Assume that all variances and covariances are finite. As N goes to infinity,

 (V IV dg _) E( [2{ (g2Z) -E[ g(Z)] 2

 with E = Y-E[Y]-aIV (D- E[D]).

 PROOF: See Appendix.

 In textbook discussions of instrumental variables estimation often the assumption
 E[eE2ZZ=z]=ff2 is made. In that case the variance in Theorem 3 simplifies to the
 standard IV variance, a 2* Var (g(Z))/Cov2 (D, g(Z)).

 4. EXAMPLES

 In this section we give a number of examples and discuss the applicability of
 Conditions 1, 2, and 3. The examples exploit the manner in which a particular program
 or treatment is implemented to create instruments that are exogenous. Evaluations of
 this type are sometimes referred to as natural experiments, in contrast with the
 identification achieved in clinical trials where individuals are directly randomized into
 treatment and control groups.
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 472 G. W. IMBENS AND J. D. ANGRIST

 EXAMPLE 1 (Draft Lottery): Angrist (1990) uses the Vietnam-era draft lottery to
 estimate the effect of veteran status on earnings. The instrument is the draft lottery
 number, randomly assigned to date of birth and used to determine priority for military
 conscription. The average probability of serving in the military falls with lottery number.
 Condition 1 requires that potential earnings with and without military service be
 independent of the lottery number. This is a standard IV assumption which would be
 violated if, for example, lottery numbers are related to earnings through some variable
 other than veteran status. Condition 2 requires that someone who would serve in the
 military with lottery number k would also serve in the military with lottery number 1 less
 than k, which seems plausible. In the Angrist draft lottery application, g(z) is an
 estimate of P(z), and Condition 3 is therefore satisfied. The average effect of veteran
 status identified under Theorem 1 is for men who would have served with a low lottery
 number, but not with a high lottery number.

 EXAMPLE 2 (Administrative Screening):5 Suppose applicants for a social program are
 screened by two officials. The two officials are likely to have different admission rates,
 even if the stated admission criteria are identical. Since the identity of the official is
 probably immaterial to the response, it seems plausible that Condition 1 is satisfied. The
 instrument is binary so Condition 3 is trivially satisfied. However, Condition 2 requires
 that if official A accepts applicants with probability P(O), and official B accepts people
 with probability P(1) > P(O), official B must accept any applicant who would have been
 accepted by official A. This is unlikely to hold if admission is based on a number of
 criteria. Therefore, in this example we cannot use Theorem 1 to identify a local average
 treatment effect nonparametrically despite the presence of an instrument satisfying
 Condition 1.

 EXAMPLE 3 (Randomization of Intention to Treat):6 Let the instrument be an
 indicator for assignment to treatment group in a randomized trial. The actual treatment
 indicator, D, may differ from the instrument Z because some individuals may not
 comply with their assignment. Condition 1 requires that the two counterfactual out-
 comes, say health status if treated and health status if untreated, are independent of the
 original assignment. Condition 2 requires that anyone who would take the treatment if
 assigned to the control group would also take the treatment if assigned to the treatment
 group. This seems plausible if noncompliance is the result of a decision by patients. The
 instrument is binary so Condition 3 is satisfied. The treatment effect identified here is the
 average treatment effect for those who always comply with their assignment.

 Dept. of Economics, Harvard University, Cambridge, MA 02138, U.S.A., and NBER
 and

 Dept. of Economics, The Hebrew University of Jerusalem, Mt. Scopus, Jerusalem 91905,
 Israel, and NBER

 Manuscript received December, 1991; final revision received May, 1993.

 APPENDIX

 PROOF OF THEOREM 2: We start with three preliminary observations: First, without loss of
 generality, we assume that the first version of Condition 3 applies. Given that the points of support
 are ordered, this implies that if 1 < m, then g(zl) 6 g(zm) and that Cov(D, g(Z)) > 0.

 5This example was suggested to us by Geert Ridder.
 6A similar example is discussed in Robins (1989).
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 LOCAL AVERAGE TREATMENT EFFECTS 473

 Second, given the K + 1 points in the support of Z, we can define K x (K + 1)/2 local average
 treatment effects az1, Z, one for each (unordered) pair of points of support (zl, zm). These
 K x (K + 1)/2 local average treatment effects are related in the following way (using the definition
 of a ):

 P(z1) P(zk) P(Zm) P(ZI)
 Zm Zk P(Zm> P(Zk) ZZk P(Zm) P(Zk) ) m'

 for all k#1, kim, and Iom.

 Third, the conditional expectation of Y given Z = Zk for k > 1 can be written as

 E[YIZ =Zk =E[YIZ =zo] +Zk,ZO (P(Zk) -( ZO))
 k

 =E[YIZ=zo]+ E az1,z1 - (P(Z1) P(zt1)).
 1=1

 The IV procedure estimates

 Iv Cov (Y, g(Z)) E[Y- (g(Z) - E[g(Z)])]

 (3) ag Cov (D, g(Z)) E[D * (g(Z) - E[g(Z)])]
 First we analyze the numerator of this expression:

 E[Y- (g(Z) -E[g(Z)])]

 K

 = E w1E[YIZ =zl] * (g(zl) -E[g(Z)])
 1=0

 K

 = Fir, * E[YIZ = zo] (g(zl) - E[g(Z)])
 1=0

 K I

 + E Ir E a Zk,Zk-l (P(Zk) -P(Zk-1)) (g(zl) -E[g(Z)])
 1=1 k=1

 K K

 ZkE aZk-Zkl (P(Zk) -P(Zk-1)) 1rT1 (g(Z,)-E[g(Z)])I
 k=1 l=k

 where the factor multiplying a Zk, Zk- is equal to the numerator of Ak in (2). A similar calculation
 shows that the denominator of a V in (3) is equal to the denominator of Ak in (2).

 The weights Ak clearly add up to one. They are nonnegative because P(Zk) > P(Zk -) and
 g(Zk) > g(zk_ -1) which follows from the ordering of the points of support, and this in turn implies
 that -ffkrl (g(z1) - E[g(Z)]) > 0 for all k. Q.E.D.

 PROOF OF THEOREM 3: We give the proof for the case where g( ) is estimated, which will as a
 special case give the variance for the known g( ) case. Let g(z, 0) be a known function, with 0 an
 unknown parameter to be estimated in the first stage. Also, let Op(Z, D, 0) be the estimating
 equation for 0. That is, 0 is characterized by E =lqp(Z, D, )=0. We assume that there is a
 unique solution to Eqf(Z, D, 0) = 0 and that E[dqf(Z,'D, 0)/dO)] has a full rank. glv can be written
 as the second element of the solution to

 h(I,c4V) =
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 474 G. W. IMBENS AND J. D. ANGRIST

 where y is a nuisance parameter, equal to E[Y] - aIV E[D]. Using standard asymptotic theory,
 the asymptotic variance of ((O - o) y a)_v Y,cav_4vY is equal to V = FA(')1, with

 E[q/s(Z,D, 0) * q(Z, D, 0) ] E[e * +(Z, D, 0)] E[g(Z) * ? * (Z, D,0)]~
 A = E[e * p(Z, D, O)f E[g(Z) *]

 E[ g(Z) * q/ (Z, D, 0)] E[g(Z) * ? E[ g2(Z)]

 E[df(Z,D,0) 0

 r= -1 -E[D]

 [ dg -E[g(Z)] -E[D * g(Z)]
 do)

 where e is again equal to Y-E[Y]-aIV(D-E[D])=Y-y-aIV D.
 Substitution of these matrices in the variance formula V = F- 1A(F')-1 gives the desired variance

 of N (a^.IV- a V) as the bottom right element of V.
 If g(z5 is a known function, the first column and row of F and A can be removed, and the

 asymptotic variance of FN(a^ V - a V) is equal to the (2,2) element of
 9 9~~1

 - -1 -E[D] E[ E[2] E[?E2.*g(z)]

 t-E[g(Z)] -E[D * g(Z)] J E[? * g(Z)] E[ *g()

 (-1 -E[g(Z)] -

 t-E[D] -E[ D g(Z)]J

 The relevant matrices are invertible because Cov(D, g(Z)) =# 0 and E[dqf(Z, D, 0)/do] # 0.
 The reason that the variance of the IV estimator is affected by the first stage estimation of

 g(Z, 0) is that Condition 1 implies only that E[g(Z, 0) * = 0, not necessarily that E[ IZ = z] = 0.
 The latter is often assumed in textbook discussions of instrumental variables, and making this
 assumption implies that the variance of the IV estimator is not affected by the first stage estimation
 because E[? * dg/l0(Z, 0)] is equal to zero. Q.E.D.
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