Microeconometrics

Counterfactuals: from ATE to LATE

Alex Armand alex.armand@novasbe.pt

Counterfactual

Alternative scenarios we can't directly observe but must infer.

The government introduced the new job training program six month ago, and today unemployment is down by 10%.

A city banned plastic bags and the litter reduced by 25% as compared to other cities.

A study finds that people who eat chocolate live longer than those who do not.

Understanding counterfactuals ensures that causal claims are well-founded.

Counterfactual

Consider the case in which we compare groups of individuals

- Assume 2 groups:
 - **Group D** eats chocolate.
 - **2** Group C does not eat chocolate.
- This is what we are doing in linear models to compare groups:

$$y_i = \alpha + \beta d_i + \epsilon_i$$
$$d_i = \begin{cases} 1 & i \text{ is in group } D\\ 0 & i \text{ is in group } C \end{cases}$$

- What are α and β ?
- What assumptions we need to identify β ?

The potential outcomes model

Neyman - Fisher - Cox - Roy - Quandt - Rubin model

- y_i is an outcome of interest for individual i
- *d_i* is a **group indicator** (1 if the individual *i* is in group D and 0 if in group C)
- Potential outcomes for individual i: denoted by

$$y_{1i} = \beta + \alpha_i + u_{1i} \text{ if } d_i = 1$$

$$y_{0i} = \beta + u_{0i} \text{ if } d_i = 0$$

- α_i is the effect of the treatment
- Stable Unit Treatment VAlue (SUTVA) assumption: y_{1i} , y_{0i} and d_i don't depend on j

The potential outcomes model: a simple example

How John react when offered additional pocket money?

additional pocket money

on John's consumption of sweets

Can we observe y_{1i} and y_{0i} for John?

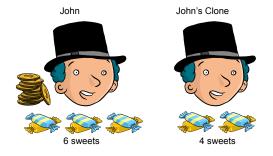
The treatment model: potential versus observed

From the data, we observe y_i

$$y_i = y_{1i}d_i + y_{0i}(1 - d_i) = y_{0i} + (y_{1i} - y_{0i})d_i$$

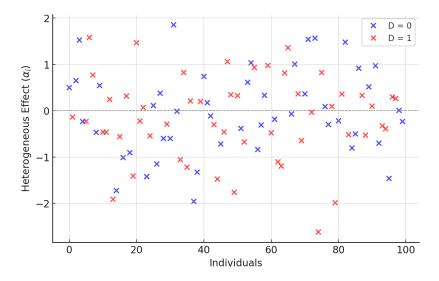
= $y_{0i} + \alpha_i d_i$

- Effects are heterogeneous: α_i is individual-specific!
- Fundamental observability problem: we only observe one of the two potential outcomes



What can we learn about α_i ?

Ideally, we would like to observe α_i for each individual.



What can we learn about α_i ?

• Estimation methods typically do not identify α_i

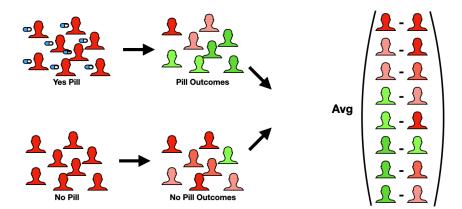
$$y_i = \beta + \alpha_i d_i + u_i$$

• Only some average of this parameter over some (sub-)population:

- *E*[*α_i*]: average treatment effect (**ATE**)
- *E*[α_i|d_i = 1]: average effect on individuals that were assigned to treatment (ATT)
- $E[\alpha_i | d_i = 0]$: a average effect on non-participants (ATNT)
- E[α_i|z = z*]: a local average of the effect (LATE)

Causal inference comparing groups

An example from medical studies:



Causal inference comparing groups

- In the sample, the following averages of y_i can be computed:
 - Average for **Yes Pill**: $E[y_i|d_i = 1]$
 - Average for **No Pill**: $E[y_i|d_i = 0]$
- Take the difference:

$$E[y_i|d_i = 1] - E[y_i|d_i = 0] = E[y_{1i}|d_i = 1] - E[y_{0i}|d_i = 0]$$

= $E[y_{1i} - y_{0i}|d_i = 1] + \{E[y_{0i}|d_i = 1] - E[y_{0i}|d_i = 0]\}$

- Difference in means is equal to ATT + {selection bias}!
- Intuition:
 - ATT: effect of pill in the Yes Pill group
 - Selection bias: difference in outcomes driven by characteristics of Yes Pill individuals

Causal inference comparing groups

- In the sample, the following averages of y_i can be computed:
 - Average for **Yes Pill**: $E[y_i|d_i = 1]$
 - Average for **No Pill**: $E[y_i|d_i = 0]$
- Take the difference:

$$E[y_i|d_i = 1] - E[y_i|d_i = 0] = E[y_{1i}|d_i = 1] - E[y_{0i}|d_i = 0]$$

=
$$E[y_{1i} - y_{0i}|d_i = 1] + \{E[y_{0i}|d_i = 1] - E[y_{0i}|d_i = 0]\}$$

- Difference in means is equal to ATT + {selection bias}!
- Intuition:
 - ATT: effect of pill in the Yes Pill group
 - Selection bias: difference in outcomes driven by characteristics of Yes Pill individuals

Back into OLS

When we estimate the following model:

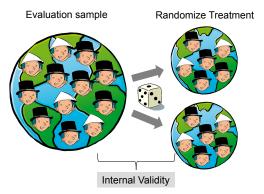
$$y_i = \beta + \alpha d_i + \epsilon_i$$

• How can we estimate this model?

- Orthogonality fails when:
 - **3** Selection on the observables: ϵ_i contains observable characteristics that determine d_i
 - Selection on the unobservables: e_i contains unobservable characteristics that determine d_i

The social experiment

Assignment to treatment is at random: groups are equal in all aspects apart from the treatment status.



• Random assignment determines the following assumptions:

1 R1:
$$E[u_i|d_i = 1] = E[u_i|d_i = 0] = E[u_i]$$

2 R2: $E[\alpha_i | d_i = 1] = E[\alpha_i | d_i = 0] = E[\alpha_i]$

Comparing means in the social experiment

- Under R1 and R2: $E[y_{1i}|d_i = 1] = E[y_{1i}|d_i = 0] = E[y_{1i}]$
- Comparing means we obtain (recall from ATT + bias)

$$E[y_i|d_i = 1] - E[y_i|d_i = 0] = E[y_{1i} - y_{0i}|d_i = 1] + \{E[y_{0i}|d_i = 1] - E[y_{0i}|d_i = 0]\}$$
$$= E[y_{1i} - y_{0i}|d_i = 1]$$
$$= E[y_{1i} - y_{0i}]$$

• The difference is identified with an OLS regression of the treatment indicator on the outcome variable using the cross-section post-treatment!

$$y_i = \beta + \alpha_{ATE} d_i + u_i$$

APPLICATION: Lalonde (1986) dataset

We will make use of the following paper: Lalonde, R.J. (1986) "Evaluating the Econometric Evaluations of Training Programs with Experimental Data", American Economic Review, 76, 604-620.

obs: vars:	3,509 11			NSW: treated and control groups 24 Oct 2012 10:31
	storage	display	value	
variable name	type	format	label	variable label
treated	byte	%16.0g	treated	NSW treated (1), NSW controls (0)
age	byte	%9.0g		Age
age2	int	%9.0g		Age (squared)
educ	byte	%9.0g		Schooling (years)
black	byte	%9.0g	dummy	Black
hispanic	byte	%9.0g	dummy	Hispanic
married	byte	%9.0g	dummy	Married
nodegree	byte	%9.0g	dummy	<12 years of education
re75	float	%9.0g		Real earnings (1975)
re78	float	%9.0g		Real earnings (1978)
randomized	float	%9.0g	sample	NSW sample (1) PSID sample (0)

Experimental vs non-experimental data

Combines cross-sections data from two different populations:

- experimental: National Supported Work (NSW) programme
 - Employment program designed to help disadvantaged workers
 - NSW was assigning applicants to available positions at random
- **2** non-experimental: Panel Study of Income Dynamics (PSID) dataset
 - Sample representative of the working-age population

tabulate treated

•	cuburuco	created		
NSW trea (1), contr	NSW	FTOO	Percent	Cum.
	(0)	Freq.	Percent	cum.
	-	2,915	83.07	83.07
Trea	ted	594	16.93	100.00
Тс	tal	3,509	100.00	

Experimental dataset

- Drop the observations for which the variable *randomization* equals 0.
- The first step in a social experiment is to check balance across control and treatment group
 - t-test on each of the variables
 - e Hotelling T-squared test of the hypothesis that the vector of means of all variables are equal across groups
- If randomization is confirmed, then we can apply OLS for estimating ATE using the cross-section

Performing a t-test on individual variables allows

- Comparing equality at the mean across the two groups
- Identify variables to use as control variable in OLS

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
- Treated	425 297	24.44706	.3196754	6.590276 6.686391	23.81871 23.86271	25.0754
combined	722	24.52078	.2465922	6.625947	24.03665	25.0049
diff		1792038	.5027163		-1.166403	.807995
diff = Ho: diff =		- mean(Treate		te's degrees	t : of freedom :	= -0.3565 = 631.223
	iff < 0 = 0.3608	Pr(Ha: diff != T > t) = (-		iff > 0) = 0.6392

ttest age, by(treat) unequal

Two-sample t test with unequal variances

٠

Performing a t-test on individual variables allows

- Comparing equality at the mean across the two groups
- Identify variables to use as control variable in OLS

ttest	educ,	by(treat)	unequal
-------	-------	-----------	---------

Two-sample t test with unequal variances

.

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
- Treated	425 297	10.18824 10.38047	.0785178 .1054743	1.618686 1.817712	10.0339 10.1729	10.34257 10.58805
combined	722	10.26731	.0634451	1.704774	10.14275	10.39187
diff		1922361	.131491		4504846	.0660124
diff = Ho: diff =		- mean(Treate		te's degrees	t of freedom	= -1.4620 = 588.748
	iff < 0) = 0.0721	Pr(Ha: diff != T > t) = 1	-		iff > 0) = 0.9279

Performing a t-test on individual variables allows

- Comparing equality at the mean across the two groups
- Identify variables to use as control variable in OLS

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
-	425	.8	.0194257	.4004714	.7618173	.8381827
Treated	297	.8013468	.0231906	.3996597	.7557074	.8469862
combined	722	.800554	.0148813	.3998609	.7713382	.8297698
diff		0013468	.0302517		0607517	.0580581
diff =	= mean(-)	- mean(Treate	d)		t	= -0.0445
Ho: diff =	= 0		Satterthwai	te's degrees	of freedom	= 637.876
Ha: di	ff < 0		Ha: diff !=	0	Ha: d	iff > 0
Pr(T < t)	= 0.4823	Pr(T > t) = 0	0.9645	Pr(T > t) = 0.5177

ttest black, by(treat) unequal

Two-sample t test with unequal variances

Performing a t-test on individual variables allows

- Comparing equality at the mean across the two groups
- Identify variables to use as control variable in OLS

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
- Treated	425 297	3026.683 3066.098	252.2977 282.8697	5201.25 4874.889	2530.773 2509.407	3522.593 3622.789
combined	722	3042.897	188.5423	5066.143	2672.739	3413.054
diff		-39.41544	379.0375		-783.6763	704.8454
diff = Ho: diff =		- mean(Treate		te's degrees	t of freedom	= -0.1040 = 661.861
	iff < 0) = 0.4586	Pr(Ha: diff != T > t) = (-		iff > 0) = 0.5414

ttest re75, by(treat) unequal

Two-sample t test with unequal variances

.

Comparing overall balance with Hotelling test

In the second second

Source	SS	df	MS	Number of obs	=	722
				F(7, 714)	=	1.13
Model	1.91497145	7	.273567349	Prob > F	=	0.3423
Residual	172.911898	714	.242173527	R-squared	=	0.0110
				Adj R-squared	=	0.0013
Total	174.82687	721	.242478322	Root MSE	=	.49211

. reg treat age educ black hispanic married nodegree re75

treated	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	0003867	.0028944	-0.13	0.894	0060693	.0052959
educ	0056696	.0143623	-0.39	0.693	0338669	.0225277
black	023763	.0640981	-0.37	0.711	1496064	.1020803
hispanic	0602687	.0836427	-0.72	0.471	2244838	.1039464
married	.022314	.052165	0.43	0.669	0801011	.1247291
nodegree	1295037	.0592253	-2.19	0.029	2457803	013227
re75	-7.54e-07	3.73e-06	-0.20	0.840	-8.09e-06	6.58e-06
_cons	.6040808	.2070859	2.92	0.004	.1975107	1.010651

2 Test joint significance of all variables (constant excluded)

. test age educ black hispanic married nodegree re75

(1)	age = 0	
(2)	educ = 0	
(3)	black = 0	
(4)	hispanic = 0	
(5)	married = 0	
(6)	nodegree = 0	
(7)	re75 = 0	
		F(7, 714) =	1.13
		Prob > F =	0.3423

Estimate impact with OLS: no controls

٠

Positive effect (significant at 10%) - notice for simplicity we assume homosckedasticity

treated cons	886.3037 5090.048	472.0863 302.7826	1.88 16.81	0.061 0.000	-40.52 4495.		1813.134 5684.491
re78	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
Total	2.8191e+10	721	39099301.3			=	6242
Residual	2.8053e+10	720	38962866.3	R-squ		=	0.0049
Model	137332501	1	137332501	- F(1, Prob		=	3.52 0.0609
Source	SS	df	MS	Numbe	r of ob	s =	722

regress re78 treated

Estimate impact with OLS: controls

.

Introducing controls reduces slightly the size of the effect (still significant at 10%) – why?

regress re78 treated age age2 educ black hispanic nodegree

Source	SS	df	MS		er of obs 714)	=	722 2.48
Model	670296792	7	95756684.6		> F	=	0.0159
Residual	2.7520e+10	714	38543836.8	B R−sq	uared	=	0.0238
				- Adj	R-squared	=	0.0142
Total	2.8191e+10	721	39099301.3	8 Root	MSE	=	6208.4
re78	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
treated	798.3512	472.1283	1.69	0.091	-128.574	7	1725.277
age	-3.805475	211.1663	-0.02	0.986	-418.386	6	410.7756
age2	.5296508	3.556177	0.15	0.882	-6.45216	4	7.511466
educ	219.7946	182.9296	1.20	0.230	-139.349	6	578.9387
black	-1762.833	803.88	-2.19	0.029	-3341.08	4	-184.5814
hispanic	-117.148	1054.228	-0.11	0.912	-2186.90	6	1952.61
nodegree	-494.2816	749.2561	-0.66	0.510	-1965.2	9	976.727
_cons	4430.163	3653.224	1.21	0.226	-2742.18	3	11602.51

Estimate impact with OLS: heterogeneity

٠

Example: estimate impact for younger (less than and older than 24 y.o.)

regress re78 treated if age <= 24

Source	SS	df	MS		er of obs	=	408 0.39
Model Residual	11632102.9 1.2062e+10	1 406	11632102.9 29709228.5	Prob R-sq	406) > F uared R-squared	=	0.39 0.5318 0.0010 -0.0015
Total	1.2074e+10	407	29664812.9			=	-0.0015 5450.6
re78	Coef.	Std. Err.	t	P> t	[95% Con	f.	Interval]
treated _cons	343.0828 5165.895	548.2965 351.8358	0.63 14.68	0.532 0.000	-734.7718 4474.247		1420.937 5857.542

Estimate impact with OLS: heterogeneity

٠

Example: estimate impact for younger (less than and older than 24 y.o.)

regress re78 treated if age > 24

Source	SS	df	MS		er of obs	= 314 = 3.79
Model Residual	192959702 1.5904e+10	1 312	192959702 50973253.4	Prob R-squ	312) > F Jared R-squared	= 0.0526 = 0.0120 = 0.0088
Total	1.6097e+10	313	51426884.2	2		= 7139.6
re78	Coef.	Std. Err.	t	P> t	[95% Cont	f. Interval]
treated _cons	1593.373 4991.653	818.946 524.9106		0.053 0.000	-17.98248 3958.841	3204.728 6024.465

Non-experimental dataset (PSID)

- Now drop the observations for which the variable *randomization* equals 1.
- What is now treatment and control group?
 - Treatment: individuals in the working-age population that applied to NSW and were admitted
 - Control: individuals in the working-age population that applied to NSW and were NOT admitted + everybody else in the working-age population
- Are they comparable? Is the counterfactual credible?

The two groups are not balanced at all

ttest age, by(treat) unequal

Two-sample t test with unequal variances

٠

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
- Treated	2,490 297	34.8506 24.62626	.209234 .3879837	10.44076 6.686391	34.44031 23.86271	35.26089 25.38982
combined	2,787	33.76103	.200551	10.5875	33.36779	34.15428
diff		10.22434	.4408064		9.358228	11.09045
diff = Ho: diff =		• mean(Treate		te's degrees	-	= 23.1946 = 488.295
	iff < 0) = 1.0000	Pr(Ha: diff != T > t) = (-		iff > 0) = 0.0000

The two groups are not balanced at all

ttest educ, by(treat) unequal

Two-sample t test with unequal variances

.

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
- Treated	2,490 297	12.11687 10.38047	.0617724 .1054743	3.082435 1.817712	11.99574 10.1729	12.238 10.58805
combined	2,787	11.93183	.0572254	3.021046	11.81962	12.04403
diff		1.736396	.122232		1.496274	1.976518
diff = Ho: diff =		mean(Treate		te's degrees	t : of freedom :	= 14.2057 = 526.514
	iff < 0) = 1.0000	Pr(Ha: diff != T > t) = (-		iff > 0) = 0.0000

The two groups are not balanced at all

ttest black, by(treat) unequal

Two-sample t test with unequal variances

٠

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
- Treated	2,490 297	.2506024 .8013468	.0086863 .0231906	.433447 .3996597	.2335692 .7557074	.2676356 .8469862
combined	2,787	.3092931	.0087567	.4622852	.2921228	.3264635
diff		5507444	.024764		5994344	5020543
diff = Ho: diff =		- mean(Treate		te's degrees	t of freedom	= -22.2397 = 383.983
	iff < 0) = 0.0000	Pr(Ha: diff != T > t) = (-		iff > 0) = 1.0000

The two groups are not balanced at all

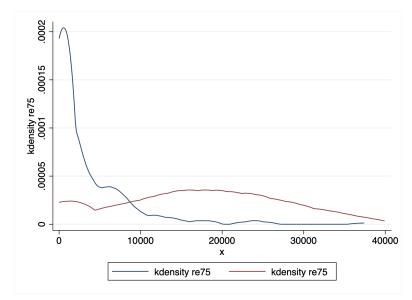
ttest re75, by(treat) unequal

Two-sample t test with unequal variances

٠

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
- Treated	2,490 297	19063.34 3066.098	272.4846 282.8697	13596.95 4874.889	18529.02 2509.407	19597.66 3622.789
combined	2,787	17358.57	262.5175	13858.84	16843.82	17873.32
diff		15997.24	392.7635		15226.5	16767.98
diff = Ho: diff =		mean(Treate	-	te's degrees	t : of freedom :	
	iff < 0) = 1.0000	Pr(Ha: diff != T > t) = (-		iff > 0) = 0.0000

The two groups are not balanced at all



Estimate difference with OLS: no controls

This is called naive OLS estimator - why?

٠

regress re78 treated

Source	SS	df	MS		er of obs 2785)	=	2,787 290.90
Model Residual	6.4390e+10 6.1645e+11	1 2,785	6.4390e+10 221346575	Prob R-sq	> F uared	=	0.0000 0.0946 0.0942
Total	6.8084e+11	2,786	244379102	-	R-squared MSE	=	14878
re78	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
treated _cons	-15577.57 21553.92	913.3285 298.1513	-17.06 72.29	0.000 0.000	-17368.44 20969.3	-	-13786.7 22138.54

Estimate difference with OLS: controls

.

Controls are not very helpful in reducing bias in this case - why?

regress re78 treated age age2 educ black hispanic nodegree

Source	SS	df	MS			= 2,787 = 121.50
Model	1.5954e+11	7	2.2791e+10) Prot) > F	= 0.0000
Residual	5.2130e+11	2,779	187586428			= 0.2343 = 0.2324
Total	6.8084e+11	2,786	244379102	2		= 0.2324 = 13696
re78	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
treated	-8067.322	990.425	-8.15	0.000	-10009.37	-6125.279
age	1219.222	202.211	6.03	0.000	822.7232	1615.721
age2	-14.21997	2.775828	-5.12	0.000	-19.66287	-8.777082
educ	1690.361	135.6443	12.46	0.000	1424.387	1956.334
black	-3204.3	655.1693	-4.89	0.000	-4488.968	-1919.632
hispanic	902.7708	1386.064	0.65	0.515	-1815.049	3620.591
nodegree	85.61254	856.3882	0.10	0.920	-1593.609	1764.834
_cons	-21850.51	3801.872	-5.75	0.000	-29305.29	-14395.73

What are we identifying in the case of IV?

IV deals with selection on unobservables

 $y_i = \beta + \alpha_i d_i + u_i$

- IV1 (homogeneity): $\alpha_i = \alpha$
- IV2 (exclusion restriction): conditional on *d*, *y* is mean-independent of instrument *z*

$$E[y|d, z] = E[y|d]$$
 which implies $E[u|d, z] = E[u|d]$

• IV3 (relevance): there are at least two values of $z(z^*, z^{**})$ such that

$$P[d = 1|z^*] \neq P[d = 1|z^{**}]$$

Wald IV estimator

When the instrument has only two values, z^* and z^{**} (e.g. a dummy), we can derive IV estimator with a different procedure

• Consider the simplest case

$$y_i = \beta + \alpha d_i + u_i$$

• IV1 + IV2:

$$E(y_i|z_i = z^*) = \beta + \alpha P(d_i = 1|z_i = z^*) + E(u_i)$$

$$E(y_i|z_i = z^{**}) = \beta + \alpha P(d_i = 1|z_i = z^{**}) + E(u_i)$$

Wald IV estimator

• By taking the difference:

$$E(y_i|z_i = z^*) - E(y_i|z_i = z^{**}) = \alpha[P(d_i = 1|z_i = z^*) - P(d_i = 1|z_i = z^{**})]$$

Wald IV estimator

$$\alpha^{IV} = \frac{E[y_i|z_i = z^*] - E[y_i|z_i = z^{**}]}{P(d_i = 1|z_i = z^*) - P(d_i = 1|z_i = z^{**})}$$

- Notice the importance of IV3 in order to have a positive denominator (this is the rank condition in the IV estimator!)
- Comparison with OLS?

Identification of the true ATE

- Identification of the true ATE relies on:
 - homogeneity assumption (IV1)
- If IV1 doesn't hold, then in general IV identifies LATE

$$E(y_i|z_i = z^*) = \beta + E[\alpha_i|z_i = z^*]P(d_i = 1|z_i = z^*) + E(u_i)$$

$$E(y_i|z_i = z^{**}) = \beta + E[\alpha_i|z_i = z^{**}]P(d_i = 1|z_i = z^{**}) + E(u_i)$$

• In first differences we obtain:

$$\frac{E[y_i|z_i = z^*] - E[y_i|z_i = z^{**}]}{P(d_i = 1|z_i = z^*) - P(d_i = 1|z_i = z^{**})} = E[\alpha_i|z]$$

• We need further assumptions!

An example: schooling as treatment

• Think about potential outcomes y_i

$$y_i = \begin{cases} y_{1i} \text{ if } d_i = 1 \text{ (complete schooling)} \\ y_{0i} \text{ if } d_i = 0 \text{ (drop-out)} \end{cases}$$

• Allows writing:
$$y_i = y_{0i} + (y_{1i} - y_{0i})d_i$$

Instrument z_i = {0, 1} with 2 values (simpler!) influences schooling example: you have higher chance to go to school if you win in a lottery

$$d_i = \begin{cases} d_{1i} \text{ if } z_i = 1 \text{ (win lottery)} \\ d_{0i} \text{ if } z_i = 0 \text{ (lose lottery)} \end{cases}$$

• Allows writing: $d_i = d_{0i} + (d_{1i} - d_{0i})z_i$

Assumptions

Potential outcomes can be indexed against schooling and \boldsymbol{z}

$$y_i = \begin{cases} y_i(1,1) \text{ if } d_i = 1, z_i = 1\\ y_i(1,0) \text{ if } d_i = 1, z_i = 0\\ y_i(0,1) \text{ if } d_i = 0, z_i = 1\\ y_i(0,0) \text{ if } d_i = 0, z_i = 0 \end{cases}$$

1 Independence of instrument

$$z_i \perp \{y_{i0}, y_{i1}, d_{1i}, d_{0i}\}$$
(1)

Participation Provide A sector of a sec

$$Cov(z, d) \neq 0$$
 (2)

3 Monotonicity
$$(d_{1i} - d_{0i} \text{ equals } 1 \text{ or } 0)$$

$$d_{1i} - d_{0i} \ge 0 \ \forall i \ (\text{or viceversa}) \tag{3}$$

What is IV identifying?

Wald estimator

$$\frac{E[y_i|z_i=1] - E[y_i|z_i=0]}{P(d_i=1|z_i=1) - P(d_i=1|z_i=0)} = ?$$

• Start from the 1st term of the numerator:

$$E[y_i|z_i = 1] = E[y_{0i} + (y_{1i} - y_{0i})d_i|z_i = 1]$$

= $E[y_{0i} + (y_{1i} - y_{0i})d_{1i}]$ by independence

• Same to the 2nd term, take difference and apply monotonicity:

$$E[y_i|z_i = 1] - E[y_i|z_i = 0] = E[(y_{1i} - y_{0i})(d_{1i} - d_{0i})]$$

= $E[(y_{1i} - y_{0i})|d_{1i} > d_{0i}]P[d_{1i} > d_{0i}]$

• The denominator follows from the same derivation $E[d_i|z_i = 1] - E[d_i|z_i = 0] = E[d_{1i} > d_{0i}] = P[d_{1i} > d_{0i}]$

LATE interpretation

Wald estimator as LATE

$$\frac{E[y_i|z_i=1] - E[y_i|z_i=0]}{P(d_i=1|z_i=1) - P(d_i=1|z_i=0)} = E[y_{1i} - y_{0i}|d_{1i} > d_{0i}]$$

d_{1i} > d_{0i} ⇒ individuals for whom the instrument changes the schooling decision (lottery winners)

$$\begin{array}{c|c} d_{0i} = 0 & d_{0i} = 1 \\ \hline d_{1i} = 0 & \underbrace{y_i(0,1) - y_i(0,0) = 0}_{\text{Never taker}} & \underbrace{y_i(0,1) - y_i(1,0)}_{\text{Defier}} \\ d_{1i} = 1 & \underbrace{y_i(1,1) - y_i(0,0)}_{\text{Complier}} & \underbrace{y_i(1,1) - y_i(1,0) = 0}_{\text{Always taker}} \end{array}$$

• Different instruments will produce different LATEs!

Imperfect compliance: ITT vs IV

Imagine out of 100 villages 50 are randomly receiving a treatment (d = 1) and 50 are controls (d = 0)

- Imperfect compliance
 - Some individuals in d = 1 do not receive treatment
 - $r_i = 1$ if received the treatment, 0 otherwise
- OLS identifies what is called Intent-to-Treat (ITT)

$$y_i = X_i\beta + \alpha_i^{ITT}d_i + u_i$$

Output Use d as IV for r

$$y_i = X_i\beta + \alpha_i r_i + u_i$$

$$r_i = X_i\beta + d_i\gamma + v_i$$

APPLICATION: back to Lalonde (1986) dataset

- As before we make use of the observations from PSID drop the observations for which the variable *randomization* equals 1.
- How can we apply IV to this setting?
 - We need to find an instrument for the variable treated
 - Use the dummy variable "married" (equal to 1 if the individual is married and equal to 0 otherwise)
 - Relevance: correlated with treated indicator
 - Exclusion restriction: not correlated with unobservable determinants of earnings (*re*78)
 - Is this a good instrument?

IV without controls

First stage 2SLS estimates

ivreg re78 (treated = married), first

First-stage regressions

.

Source	SS	df	MS		er of obs = 2785) =	277.07
Model Residual	74.670529 190.67931	1 2,785	74.670529	Prob R-sq		0.0000 0.2814
Total	265.349839	2,786	.09524402	-		
treated	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
married _cons	4032069 .4258621	.0122093 .0108649	-33.02 39.20	0.000 0.000	4271472 .404558	3792666 .4471661

IV without controls

First stage 2SLS estimates

Instrumental variables (2SLS) regression

Source	SS	df	MS		er of ob	-	2,787
Model Residual	3.9134e+10 6.4171e+11	1 2,785	3.9134e+10 230414981	Prob L R-sq	2785) > F uared R-square	= = =	207.98 0.0000 0.0575 0.0571
Total	6.8084e+11	2,786	244379102			=	15179
re78	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
treated _cons	-25333.5 22593.57	1756.632 343.1003	-14.42 65.85	0.000 0.000	-28777 21920		-21889.07 23266.33
Instrumented: Instruments:	treated married						

IV with controls - how to interpret?

First stage 2SLS estimates

ivreg re78 age educ black hisp nodeg re75 (treated = married), first

First-stage regressions

٠

Source	SS	df	MS		er of obs	=	2,787
Model Residual	104.707917 160.641922	7 2,779	14.9582739 .057805657	Prob	2779) > F uared	=	258.77 0.0000 0.3946
Total	265.349839	2,786	.09524402	-	R-squared MSE	=	0.3931 .24043
treated	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
age educ black hispanic nodegree re75 married cons	0037528 .0101419 .1222855 .1475669 .1323333 -2.66e-06 284564 .2937148	.0004841 .0024248 .0113776 .0241656 .0148324 3.84e-07 .0125818 .0394143	-7.75 4.18 10.75 6.11 8.92 -6.91 -22.62 7.45	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	004702 .005387 .099976 .100182 .103249 -3.41e-0 309234 .216430	4 2 6 7 6 6	0028036 .0148965 .1445949 .1949512 .161417 -1.90e-06 2598933 .3709991

IV with controls - how to interpret?

First stage 2SLS estimates

Instrumental variables (2SLS) regression

Source	SS	df	MS	Number of obs	=	2,787
				F(7, 2779)	=	535.47
Model	3.8893e+11	7	5.5562e+10	Prob > F	=	0.0000
Residual	2.9191e+11	2,779	105040761	R-squared	=	0.5713
 				Adj R-squared	=	0.5702
Total	6.8084e+11	2,786	244379102	Root MSE	=	10249

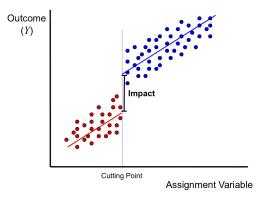
re78	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
treated	-7112.459	1884.767	-3.77	0.000	-10808.14	-3416.775
age	-76.54291	23.40888	-3.27	0.001	-122.4435	-30.64236
educ	730.5017	106.9618	6.83	0.000	520.7691	940.2342
black	147.2899	575.544	0.26	0.798	-981.2471	1275.827
hispanic	2746.651	1077.502	2.55	0.011	633.8649	4859.437
nodegree	1332.688	706.7127	1.89	0.059	-53.04686	2718.423
re75	.7638929	.0179238	42.62	0.000	.7287475	.7990382
cons	639.5256	1644.599	0.39	0.697	-2585.234	3864.285

Instrumented: treated

Instruments: age educ black hispanic nodegree re75 married

Another LATE estimator \Rightarrow regression discontinuity (RD)

Probability of treatment changes **discontinuously** with some **observable continuous variable** z (*assignment or forcing variable*)

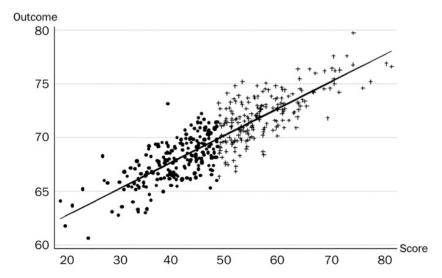


Examples:

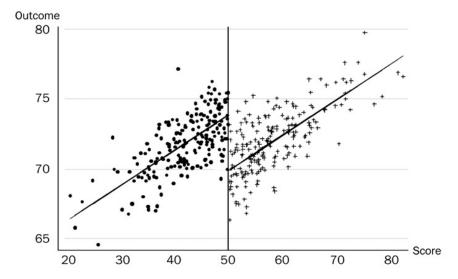
- Students receive a scholarship if GPA is ≥ 3.0
- Individuals eligible for a loan if they own < 0.5 acres of land
- Legislators are elected if they obtain > 50% of votes

Main idea: on either sides of the cut-off, individuals are very similar, but treatment status differs

RD in practice: pre-programme or unaffected variables



RD in practice: post-programme



RD setting

$$y_i = \beta_i + \alpha_i d_i + u_i$$

Assumptions needed for identification:

O Discontinuity: *d* is a function of *z* discontinuous at $z = z^*$

$$\lim_{z \to z^{*-}} P(d = 1|z) \neq \lim_{z \to z^{*+}} P(d = 1|z)$$

2 Smoothness: $E[\beta_i|z]$ and $E[\alpha_i|z]$ are continuous at $z = z^*$

$$\lim_{z \to z^{*-}} E[\beta_i | z] = \lim_{z \to z^{*+}} E[\beta_i | z]; \qquad \lim_{z \to z^{*-}} E[\alpha_i | z] = \lim_{z \to z^{*+}} E[\alpha_i | z]$$

Social randomization: α_i independent from d in the neighbourhood of z*

RD setting

- Potential outcomes $E[y_{i0}|z]$ and $E[y_{i1}|z]$ are continuous at $z = z^*$
- For each value of $z \Rightarrow$ observe either $E[y_{i0}|z]$ OR $E[y_{i1}|z]$

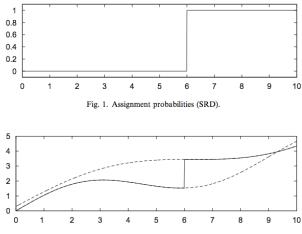


Fig. 2. Potential and observed outcome regression functions.

Identification

Define
$$p(z^*) \equiv P(d_i = 1 | z = z^*)$$
 and compute $E(y_i | z^*)$:

$$E(y_i | z^*) = E(\beta_i | z^*) + p(z^*) \cdot E(\alpha_i | d = 1, z^*)$$

$$= E(\beta_i | z^*) + p(z^*) \cdot E(\alpha_i | z^*)$$

Take difference in limits around the cut-off

$$\lim_{z \to z^{*+}} E[y_i | z] - \lim_{z \to z^{*-}} E[y_i | z] = E[\alpha_i | z^*] \left[\lim_{z \to z^{*+}} p(z) - \lim_{z \to z^{*-}} p(z) \right]$$

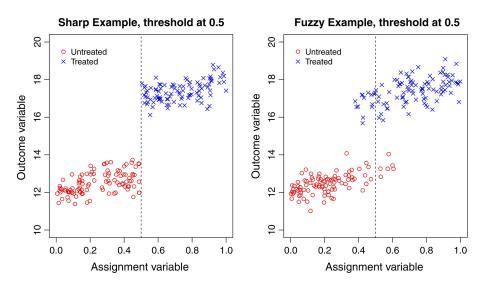
• $E[\alpha|z^*]$ is a LATE \Rightarrow

• Average effect for those at the discontinuity $(z = z^*)$

• We do not learn about α_i away from the discontinuity

Sinal formula depends of the features of the discontinuity

Sharp versus fuzzy designs



RD: sharp versus fuzzy designs

• Fuzzy RD: p(z) is in between 0 and 1

$$\alpha^{RD,FUZZY}(z^*) = \frac{\lim_{z \to z^{*+}} E[y_i|z] - \lim_{z \to z^{*-}} E[y_i|z]}{\lim_{z \to z^{*+}} p(z) - \lim_{z \to z^{*-}} p(z)}$$
(4)

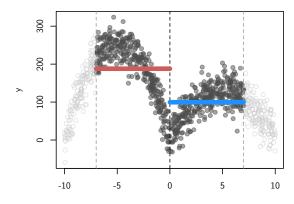
② Sharp RD: p(z) is either 0 or 1 in different sides of the cut-off → denominator of equation (4) is equal to 1

$$\alpha^{RD,SHARP}(z^*) = \lim_{z \to z^{*+}} E[y_i | z] - \lim_{z \to z^{*-}} E[y_i | z]$$
(5)

Non-parametric estimation in sharp RD

Estimator: sample correspondent of equation (5) restricting the sample to **bandwidth** $z^* \pm \Delta$

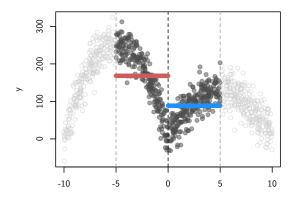
 Efficiency-bias trade-off: ↓ △ ⇒ ↑ similarity of individuals around the discontinuity ↓ precision (less observations)



Non-parametric estimation in sharp RD

Estimator: sample correspondent of equation (5) restricting the sample to **bandwidth** $z^* \pm \Delta$

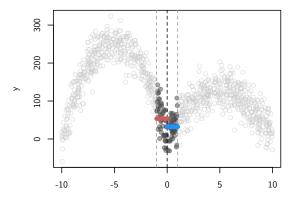
 Efficiency-bias trade-off: ↓ △ ⇒ ↑ similarity of individuals around the discontinuity ↓ precision (less observations)



Non-parametric estimation in sharp RD

Estimator: sample correspondent of equation (5) restricting the sample to **bandwidth** $z^* \pm \Delta$

 Efficiency-bias trade-off: ↓ △ ⇒ ↑ similarity of individuals around the discontinuity ↓ precision (less observations)



Parametric estimation in sharp RD

Estimator: explicitly estimate the conditional mean of y as function of z and look at the jump at the cut-off

• Some examples using OLS to $E[y_i|z]$:

1 f(z) is linear \Rightarrow equivalent to local conditional means

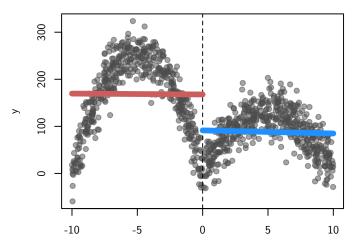
$$y_i = \beta + \alpha d_i + \gamma z_i + \epsilon_i$$

2 f(z) behaves differently on either side of cut-off

$$y_i = \beta + \alpha d_i + \gamma_1 z_i + \mu_1 d_i z_i + \epsilon_i$$

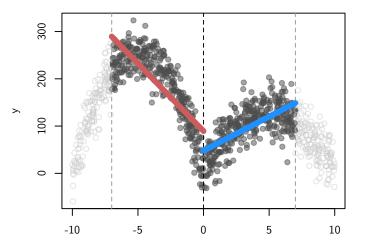
- For correct interpretation of α (see interaction terms) ⇒ make sure z_i is discontinuous at 0 or use the transform ž_i = z_i z^{*}
- More flexible forms \Rightarrow adds z (and interactions) with powers higher than 1

$$y_i = \beta + \alpha d_i + \gamma_1 z_i + \mu_1 d_i z_i + \epsilon_i$$



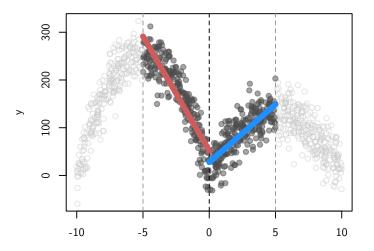
х

$$y_i = \beta + \alpha d_i + \gamma_1 z_i + \mu_1 d_i z_i + \epsilon_i$$

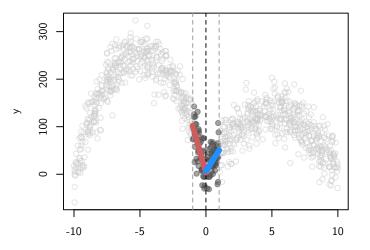


х

$$y_i = \beta + \alpha d_i + \gamma_1 z_i + \mu_1 d_i z_i + \epsilon_i$$



$$y_i = \beta + \alpha d_i + \gamma_1 z_i + \mu_1 d_i z_i + \epsilon_i$$

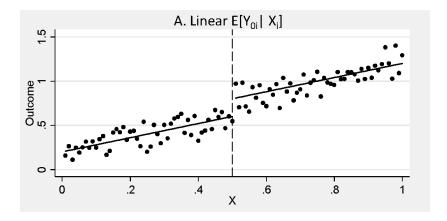


х

Getting the right functional form

Functions can be different: what is the right assumption?

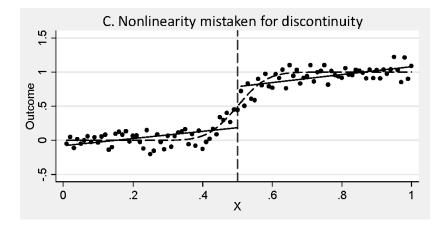
$$y_i = \beta + \alpha d_i + \gamma_1 z_i + \mu_1 d_i z_i + \epsilon_i$$



Getting the right functional form

Functions can be different: what is the right assumption?

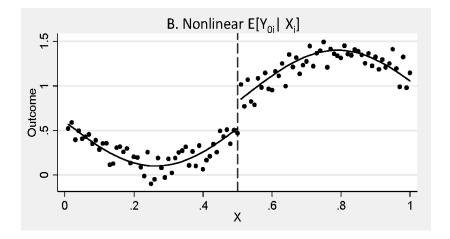
$$y_i = \beta + \alpha d_i + \gamma_1 z_i + \mu_1 d_i z_i + \epsilon_i$$



RD: getting the right functional form

Functions can be different: include higher-degree interactions

$$y_i = \beta + \alpha d_i + \gamma_1 z_i + \gamma_2 z_i^2 + \mu_1 d_i z_i + \mu_2 d_i z_i^2 + \epsilon_i$$

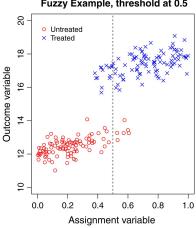


Estimation with fuzzy RD

- On-parametric: sample correspondents of equation (4)
- Parametric: apply Wald estimator (or 2SLS) to identify LATE

$$\frac{E[y_i|z^*] - E[y_i|z^{**}]}{P(d_i = 1|z^*) - P(d_i = 1|z^{**})}$$

- z is a perfect IV
 - uncorrelated with ϵ_i (exclusion restriction)
 - correlated with *d_i* (relevance)



Fuzzy Example, threshold at 0.5

APPLICATION: Lemieux and Milligan (2004)

How the provision of social assistance affects labour supply?

• DISCONTINUOUS change in benefits in Canada

We examine the incentive effects of transfer programs using a unique policy episode. Prior to 1989, social assistance recipients without children in Quebec who were under age 30 received benefits 60 percent lower than recipients older than 30. We use this sharp discontinuity in policy to estimate the effects of social assistance on various labour market outcomes and on living arrangements using a regression discontinuity approach. We find strong evidence that more generous social assistance benefits reduce employment, and more suggestive evidence that they affect marital status and living arrangements. The regression discontinuity estimates exhibit little sensitivity to the degree of flexibility in the specification, and perform very well when we control for unobserved heterogeneity using a first difference specification. Finally, we show that commonly used difference-in-difference estimators may perform poorly when control groups are inappropriately chosen.

• SHARP design based on age at age^{*} = 30

The origin of the discontinuity

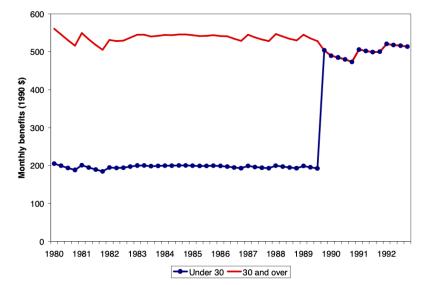
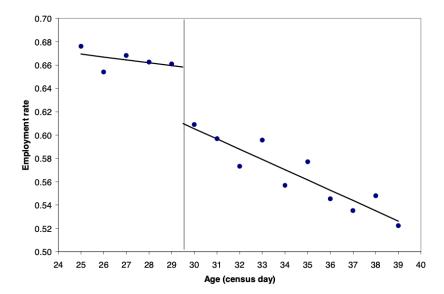


Figure 1: Social Assistance Benefits, Single Individual

RD estimates: E[y|z] is assumed linear with different slopes and intercepts



RD estimates

-								
	Empl. rate		Empl. Rate		Difference		Weekly	
Specification for age	last year		at census	iı	ı empl. ra	te	hours	
	Mean of the	he de	pendent v	ariat	ole			
	0.562		0.618		0.056		24.39	
	Regression	disco	ontinuity e	estim	ates			
Linear	-0.045	***	-0.041	***	-0.029	**	-1.45	**
	(0.012)		(0.012)		(0.011)		(0.54)	
Quadratic	-0.048	***	-0.051	***	-0.031	**	-1.75	**
	(0.013)		(0.012)		(0.012)		(0.61)	
Cubic	-0.043	**	-0.048	***	-0.030	**	-1.47	*
	(0.018)		(0.014)		(0.013)		(0.70)	
Linear spline	-0.047	***	-0.049	***	-0.032	**	-1.72	***
	(0.013)		(0.011)		(0.013)		(0.55)	
Quadratic spline	-0.038		-0.056	**	-0.035	*	-1.66	
-	(0.024)		(0.018)		(0.016)		(0.94)	

Are assumption valid? Check continuity

