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Counterfactual

Alternative scenarios we can’t directly observe but must infer.

The government introduced the new job training program six
month ago, and today unemployment is down by 10%.

A city banned plastic bags and the litter reduced by 25% as
compared to other cities.

A study finds that people who eat chocolate live longer than
those who do not.

Understanding counterfactuals ensures that causal claims are well-founded.
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Counterfactual

Consider the case in which we compare groups of individuals

Assume 2 groups:

1 Group D eats chocolate.

2 Group C does not eat chocolate.

This is what we are doing in linear models to compare groups:

yi = α + βdi + ϵi

di = {1 i is in group D
0 i is in group C

What are α and β?

What assumptions we need to identify β?
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The potential outcomes model

Neyman - Fisher - Cox - Roy - Quandt - Rubin model

yi is an outcome of interest for individual i

di is a group indicator (1 if the individual i is in group D and 0 if in
group C)

Potential outcomes for individual i : denoted by

y1i = β + αi + u1i if di = 1
y0i = β + u0i if di = 0

αi is the effect of the treatment
Stable Unit Treatment VAlue (SUTVA) assumption: y1i , y0i and
di don’t depend on j
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The potential outcomes model: a simple example

How John react when offered additional pocket money?

(P) 

(Y)? 

additional pocket money 

on John’s consumption of 
sweets 

Can we observe y1i and y0i for John?
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The treatment model: potential versus observed

From the data, we observe yi

yi = y1idi + y0i (1 − di ) = y0i + (y1i − y0i )di
= y0i + αidi

Effects are heterogeneous: αi is individual-specific!

Fundamental observability problem: we only observe one of the
two potential outcomes

John John’s Clone 

6 sweets 4 sweets 
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What can we learn about αi?

Ideally, we would like to observe αi for each individual.
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What can we learn about αi?

Estimation methods typically do not identify αi

yi = β + αidi + ui

Only some average of this parameter over some (sub-)population:

E [αi ]: average treatment effect (ATE)

E [αi ∣di = 1]: average effect on individuals that were assigned to
treatment (ATT)

E [αi ∣di = 0]: a average effect on non-participants (ATNT)

E [αi ∣z = z∗]: a local average of the effect (LATE)
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Causal inference comparing groups

An example from medical studies:
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Causal inference comparing groups

In the sample, the following averages of yi can be computed:
Average for Yes Pill: E [yi ∣di = 1]
Average for No Pill: E [yi ∣di = 0]

Take the difference:

E [yi ∣di = 1] − E [yi ∣di = 0] = E [y1i ∣di = 1] − E [y0i ∣di = 0]
= E [y1i − y0i ∣di = 1] +

{E [y0i ∣di = 1] − E [y0i ∣di = 0]}

Difference in means is equal to ATT + {selection bias}!
Intuition:

ATT: effect of pill in the Yes Pill group
Selection bias: difference in outcomes driven by characteristics of Yes
Pill individuals
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Back into OLS

When we estimate the following model:

yi = β + αdi + ϵi

How can we estimate this model?

Orthogonality fails when:

1 Selection on the observables: ϵi contains observable characteristics
that determine di

2 Selection on the unobservables: ϵi contains unobservable
characteristics that determine di
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The social experiment

Assignment to treatment is at random: groups are equal in all aspects
apart from the treatment status.

Evaluation sample Randomize Treatment 

Internal Validity 

Random assignment determines the following assumptions:
1 R1: E [ui ∣di = 1] = E [ui ∣di = 0] = E [ui ]
2 R2: E [αi ∣di = 1] = E [αi ∣di = 0] = E [αi ]
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Comparing means in the social experiment

Under R1 and R2: E [y1i ∣di = 1] = E [y1i ∣di = 0] = E [y1i ]

Comparing means we obtain (recall from ATT + bias)

E [yi ∣di = 1] − E [yi ∣di = 0] = E [y1i − y0i ∣di = 1] +
{E [y0i ∣di = 1] − E [y0i ∣di = 0]}

= E [y1i − y0i ∣di = 1]
= E [y1i − y0i ]

The difference is identified with an OLS regression of the
treatment indicator on the outcome variable using the
cross-section post-treatment!

yi = β + αATEdi + ui
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APPLICATION: Lalonde (1986) dataset

We will make use of the following paper: Lalonde, R.J. (1986) “Evaluating the
Econometric Evaluations of Training Programs with Experimental Data”, American
Economic Review, 76, 604-620.
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Experimental vs non-experimental data

Combines cross-sections data from two different populations:

1 experimental: National Supported Work (NSW) programme

Employment program designed to help disadvantaged workers

NSW was assigning applicants to available positions at random

2 non-experimental: Panel Study of Income Dynamics (PSID) dataset

Sample representative of the working-age population
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Experimental dataset

Drop the observations for which the variable randomization equals 0.

The first step in a social experiment is to check balance across control
and treatment group

1 t-test on each of the variables

2 Hotelling T-squared test of the hypothesis that the vector of means of
all variables are equal across groups

If randomization is confirmed, then we can apply OLS for estimating
ATE using the cross-section
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Comparing balance for individual variables

Performing a t-test on individual variables allows

Comparing equality at the mean across the two groups

Identify variables to use as control variable in OLS
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Comparing overall balance with Hotelling test
1 Run OLS of all variables on treatment indicator

2 Test joint significance of all variables (constant excluded)
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Estimate impact with OLS: no controls

Positive effect (significant at 10%) - notice for simplicity we assume
homosckedasticity
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Estimate impact with OLS: controls

Introducing controls reduces slightly the size of the effect (still significant
at 10%) – why?
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Estimate impact with OLS: heterogeneity

Example: estimate impact for younger (less than and older than 24 y.o.)
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Non-experimental dataset (PSID)

Now drop the observations for which the variable randomization
equals 1.

What is now treatment and control group?

1 Treatment: individuals in the working-age population that applied to
NSW and were admitted

2 Control: individuals in the working-age population that applied to
NSW and were NOT admitted + everybody else in the working-age
population

Are they comparable? Is the counterfactual credible?
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Comparing balance for individual variables

The two groups are not balanced at all
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Comparing balance for individual variables
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Estimate difference with OLS: no controls

This is called naive OLS estimator – why?
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Estimate difference with OLS: controls

Controls are not very helpful in reducing bias in this case – why?

24



What are we identifying in the case of IV?

IV deals with selection on unobservables

yi = β + αidi + ui

IV1 (homogeneity): αi = α

IV2 (exclusion restriction): conditional on d , y is mean-independent
of instrument z

E [y ∣d , z] = E [y ∣d] which implies E [u∣d , z] = E [u∣d]

IV3 (relevance): there are at least two values of z (z∗, z∗∗) such that

P[d = 1∣z∗] ≠ P[d = 1∣z∗∗]

25



Wald IV estimator

When the instrument has only two values, z∗ and z
∗∗ (e.g. a dummy),

we can derive IV estimator with a different procedure

Consider the simplest case

yi = β + αdi + ui

IV1 + IV2:

E (yi ∣zi = z
∗) = β + αP(di = 1∣zi = z

∗) + E (ui )
E (yi ∣zi = z

∗∗) = β + αP(di = 1∣zi = z
∗∗) + E (ui )
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Wald IV estimator

By taking the difference:

E (yi ∣zi = z
∗) − E (yi ∣zi = z

∗∗) = α[P(di = 1∣zi = z
∗) −

P(di = 1∣zi = z
∗∗)]

Wald IV estimator

α
IV

=
E [yi ∣zi = z

∗] − E [yi ∣zi = z
∗∗]

P(di = 1∣zi = z∗) − P(di = 1∣zi = z∗∗)

Notice the importance of IV3 in order to have a positive denominator
(this is the rank condition in the IV estimator!)

Comparison with OLS?
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Identification of the true ATE

Identification of the true ATE relies on:

homogeneity assumption (IV1)

If IV1 doesn’t hold, then in general IV identifies LATE

E (yi ∣zi = z
∗) = β + E [αi ∣zi = z

∗]P(di = 1∣zi = z
∗) + E (ui )

E (yi ∣zi = z
∗∗) = β + E [αi ∣zi = z

∗∗]P(di = 1∣zi = z
∗∗) + E (ui )

In first differences we obtain:

E [yi ∣zi = z
∗] − E [yi ∣zi = z

∗∗]
P(di = 1∣zi = z∗) − P(di = 1∣zi = z∗∗) = E [αi ∣z]

We need further assumptions!
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An example: schooling as treatment

Think about potential outcomes yi

yi = {y1i if di = 1 (complete schooling)
y0i if di = 0 (drop-out)

Allows writing: yi = y0i + (y1i − y0i )di

Instrument zi = {0, 1} with 2 values (simpler!) influences schooling -
example: you have higher chance to go to school if you win in a lottery

di = {d1i if zi = 1 (win lottery)
d0i if zi = 0 (lose lottery)

Allows writing: di = d0i + (d1i − d0i )zi
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Assumptions

Potential outcomes can be indexed against schooling and z

yi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

yi (1, 1) if di = 1, zi = 1
yi (1, 0) if di = 1, zi = 0
yi (0, 1) if di = 0, zi = 1
yi (0, 0) if di = 0, zi = 0

1 Independence of instrument

zi ⫫ {yi0, yi1, d1i , d0i} (1)

2 Relevance of instrument

Cov (z , d ) ≠ 0 (2)

3 Monotonicity (d1i − d0i equals 1 or 0)

d1i − d0i ≥ 0 ∀i (or viceversa) (3)
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What is IV identifying?

Wald estimator
E [yi ∣zi = 1] − E [yi ∣zi = 0]

P(di = 1∣zi = 1) − P(di = 1∣zi = 0) =?

Start from the 1st term of the numerator:

E [yi ∣zi = 1] = E [y0i + (y1i − y0i )di ∣zi = 1]
= E [y0i + (y1i − y0i )d1i ] by independence

Same to the 2nd term, take difference and apply monotonicity:

E [yi ∣zi = 1] − E [yi ∣zi = 0] = E [(y1i − y0i )(d1i − d0i )]
= E [(y1i − y0i )∣d1i > d0i ]P[d1i > d0i ]

The denominator follows from the same derivation

E [di ∣zi = 1] − E [di ∣zi = 0] = E [d1i > d0i ] = P[d1i > d0i ] 31



LATE interpretation

Wald estimator as LATE
E [yi ∣zi = 1] − E [yi ∣zi = 0]

P(di = 1∣zi = 1) − P(di = 1∣zi = 0) = E [y1i − y0i ∣d1i > d0i ]

d1i > d0i ⇒ individuals for whom the instrument changes the
schooling decision (lottery winners)

d0i = 0 d0i = 1
d1i = 0 yi (0, 1) − yi (0, 0) = 0

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Never taker

yi (0, 1) − yi (1, 0)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Defier

d1i = 1 yi (1, 1) − yi (0, 0)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Complier

yi (1, 1) − yi (1, 0) = 0
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Always taker

Different instruments will produce different LATEs!
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Imperfect compliance: ITT vs IV

Imagine out of 100 villages 50 are randomly receiving a treatment (d = 1)
and 50 are controls (d = 0)

Imperfect compliance
Some individuals in d = 1 do not receive treatment
ri = 1 if received the treatment, 0 otherwise

1 OLS identifies what is called Intent-to-Treat (ITT)

yi = Xiβ + α
ITT
i di + ui

2 Use d as IV for r
yi = Xiβ + αi ri + ui
ri = Xiβ + diγ + vi
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APPLICATION: back to Lalonde (1986) dataset

As before we make use of the observations from PSID – drop the
observations for which the variable randomization equals 1.

How can we apply IV to this setting?

1 We need to find an instrument for the variable treated

Use the dummy variable “married” (equal to 1 if the individual is
married and equal to 0 otherwise)

Relevance: correlated with treated indicator

Exclusion restriction: not correlated with unobservable determinants of
earnings (re78)

2 Is this a good instrument?
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IV without controls

First stage 2SLS estimates
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IV without controls

First stage 2SLS estimates

35



IV with controls - how to interpret?

First stage 2SLS estimates
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IV with controls - how to interpret?

First stage 2SLS estimates
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Another LATE estimator ⇒ regression
discontinuity (RD)

Probability of treatment changes discontinuously with some observable
continuous variable z (assignment or forcing variable)

Examples:

Students receive a scholarship
if GPA is ≥ 3.0

Individuals eligible for a loan if
they own < 0.5 acres of land

Legislators are elected if they
obtain > 50% of votes

Main idea: on either sides of the cut-off, individuals are very similar, but
treatment status differs 37



RD in practice: pre-programme or unaffected
variables
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RD in practice: post-programme
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RD setting

yi = βi + αidi + ui

Assumptions needed for identification:

1 Discontinuity: d is a function of z discontinuous at z = z
∗

lim
z→z∗−

P(d = 1∣z) ≠ lim
z→z∗+

P(d = 1∣z)

2 Smoothness: E [βi ∣z] and E [αi ∣z] are continuous at z = z
∗

lim
z→z∗−

E [βi ∣z] = lim
z→z∗+

E [βi ∣z]; lim
z→z∗−

E [αi ∣z] = lim
z→z∗+

E [αi ∣z]

3 Local randomization: αi independent from d in the neighbourhood
of z∗
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RD setting
Potential outcomes E [yi0∣z] and E [yi1∣z] are continuous at z = z

∗

For each value of z ⇒ observe either E [yi0∣z] OR E [yi1∣z]Plotting the RDD (Imbens and Lemieux, 2008)
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Identification

1 Define p(z∗) ≡ P(di = 1∣z = z
∗) and compute E (yi ∣z∗):

E (yi ∣z∗) = E (βi ∣z∗) + p(z∗) ⋅ E (αi ∣d = 1, z∗)
= E (βi ∣z∗) + p(z∗) ⋅ E (αi ∣z∗)

2 Take difference in limits around the cut-off

lim
z→z∗+

E [yi ∣z] − lim
z→z∗−

E [yi ∣z] = E [αi ∣z∗] [ lim
z→z∗+

p(z) − lim
z→z∗−

p(z)]

E [α∣z∗] is a LATE ⇒

Average effect for those at the discontinuity (z = z
∗)

We do not learn about αi away from the discontinuity

3 Final formula depends of the features of the discontinuity
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Sharp versus fuzzy designs
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RD: sharp versus fuzzy designs

1 Fuzzy RD: p(z) is in between 0 and 1

α
RD,FUZZY (z∗) =

lim
z→z∗+

E [yi ∣z] − lim
z→z∗−

E [yi ∣z]

lim
z→z∗+

p(z) − lim
z→z∗−

p(z) (4)

2 Sharp RD: p(z) is either 0 or 1 in different sides of the cut-off →

denominator of equation (4) is equal to 1

α
RD,SHARP (z∗) = lim

z→z∗+
E [yi ∣z] − lim

z→z∗−
E [yi ∣z] (5)
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Non-parametric estimation in sharp RD

Estimator: sample correspondent of equation (5) restricting the sample to
bandwidth z

∗ ±∆

Efficiency-bias trade-off: ↓ ∆ ⇒ ↑ similarity of individuals around
the discontinuity ↓ precision (less observations)Bandwidth equal to 7
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Parametric estimation in sharp RD

Estimator: explicitly estimate the conditional mean of y as function of z
and look at the jump at the cut-off

Some examples using OLS to E [yi ∣z]:
1 f (z) is linear ⇒ equivalent to local conditional means

yi = β + αdi + γzi + ϵi

2 f (z) behaves differently on either side of cut-off

yi = β + αdi + γ1zi + µ1dizi + ϵi

For correct interpretation of α (see interaction terms) ⇒ make sure zi
is discontinuous at 0 or use the transform z̃i = zi − z

∗

More flexible forms ⇒ adds z (and interactions) with powers higher
than 1
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Example: allow slopes and intercepts to change

yi = β + αdi + γ1zi + µ1dizi + ϵiBandwidth equal to 10 (Global)
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Example: allow slopes and intercepts to change

yi = β + αdi + γ1zi + µ1dizi + ϵiBandwidth equal to 7
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Example: allow slopes and intercepts to change
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Getting the right functional form

Functions can be different: what is the right assumption?

yi = β + αdi + γ1zi + µ1dizi + ϵi

How to get the functional form of f(X) right?

Pischke (LSE) RD October 26, 2018 6 / 15
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RD: getting the right functional form

Functions can be different: include higher-degree interactions

yi = β + αdi + γ1zi + γ2z
2
i + µ1dizi + µ2diz

2
i + ϵi

How to get the functional form of f(X) right?

Pischke (LSE) RD October 26, 2018 7 / 15
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Estimation with fuzzy RD

1 Non-parametric: sample
correspondents of equation (4)

2 Parametric: apply Wald estimator
(or 2SLS) to identify LATE

E [yi ∣z∗] − E [yi ∣z∗∗]
P(di = 1∣z∗) − P(di = 1∣z∗∗)

z is a perfect IV

uncorrelated with ϵi (exclusion
restriction)

correlated with di (relevance)
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APPLICATION: Lemieux and Milligan (2004)

How the provision of social assistance affects labour supply?

DISCONTINUOUS change in benefits in Canada

SHARP design based on age at age∗ = 30
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The origin of the discontinuity

52



RD estimates: E [y ∣z] is assumed linear with
different slopes and intercepts

53



RD estimates
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Are assumption valid? Check continuity
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