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Linear model setting

Parametric solution to the identification problem for f (y |x;β) ⇒

Focus on the conditional mean E [y |x;β]

The conditional mean is linear in parameters in terms of a
(well-defined) population

y = β0 + β1x1 + ...+ βK−1xK−1 + u

= xβ + u

E [y |x ] = xβ = f (x)

x is 1 × K and observed
β is the K × 1 vector of unknown slope parameters
u is an error term
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Flexibility versus interpretation

Linear model can be fairly general as x can include nonlinear functions
(logarithms, squares, reciprocals and interactions)
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Flexibility versus interpretation

Flexibility comes at what cost?

We are interested in causal relationships ⇒ partial effect

How changing x causes a change in the outcome

For a continuous variable xj ⇒ first derivative

∂f (x)

∂xj

Average Partial Effect
Averages partial effects are across the sample distribution of x.

APEj = Ex

[
∂f (x)

∂xj

]
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Flexibility versus interpretation: an example

Consider the following specifications and the APE w.r.t. match:

1 contribs = β0 + β1match + β2income + u

2 contribs = β0 + β1match + β2income + β3match · income + u

In the first, β1 captures the APE

In the second, the APE is equal to β1 + β3 · income

Flexibility comes at the cost of interpretation ⇒

Coefficients on level terms may become essentially meaningless

APE becomes functions of observable characteristics
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What is flexibility?

We compare parametric versus non-parametric approach:

Non-parametric approach (kernel regression) performs local
smoothing

Linear models perform global smoothing

Let’s see an example: relationship between wage and ability
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Global smoothing: linear model linear in ability
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Global smoothing: linear model cubic in ability
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Global versus local smoothing
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Ordinary Least Squares (OLS) setting

1 Population model
y = xβ + u (1)

x is 1 × K (for notational convenience, x1 is unity)

2 Random sample
yi = xiβ + ui (2)

For each random draw i : {(xi , yi ) : i = 1, ...,N}

Can we identify the parameters β?
Think at the problem as a population problem using equation (1)
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Assumption OLS.0 – Linearity

Linearity

y = xβ + u

1 Observable variables enter linearly in the equation

We can call xβ a linear index

2 Error term (unobservable) is separable and additive

Violations

Model nonlinear in parameters may be more appropriate

Example: the range of y is restricted, such as binary variables
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Identification steps

y = xβ + u

u is unobserved ⇒ β cannot be identified without assumptions

OLS trick: think about expected values using the following steps:

1 Multiply y by x′

x′y = (x′x)β + x′u

2 Take the expected value:

E (x′y) = E (x′x)β + E (x′u)

What assumptions are needed now?
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Assumption OLS.1 – Orthogonality

Orthogonality

E (x′u) = 0

When x has an intercept (almost always), orthogonality includes the
following K conditions:

E (u) = 0
Cov(xj , u) = 0 j = 2, ...,K

OLS.1 allows deleting the last term in our derivation

E (x′y) = E (x′x)β + E (x′u) = E (x′x)β
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Violations of orthogonality condition

Yi = α+ βDi + ϵi

1 Omitted variables: certain explanatory variables are excluded from
the regression model but are correlated with independent variables

2 Measurement error: variables are measured with error
D is uncorrelated with ϵ, but I observe only D̃ = D + v and v is
correlated with ϵ

3 Simultaneity: dependent variable causes dependent variables
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Assumption OLS.2 – No Perfect Collinearity

E (x′y) = E (x′x)β

To identify β ⇒ E (x′x) needs to be invertible

No Perfect Collinearity

rank E (x′x) = K

where the rank is the number of linearly independent rows or columns in
the matrix.

Violations:

Examples?

High correlation among regressors often cannot be avoided, but not a
violation of assumptions
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Under OLS.1 and OLS.2, β is identified

y = xβ + u

Multiply y by x′ and take the expected value:

E (x′y) = E (x′x)β + E (x′u)
E (x′y) = E (x′x)β by OLS.1

β = [E (x′x)]−1E (x′y) by OLS.2

Intuition:

1 E (x′x) is a K × K matrix of variances and covariances in the
population (variance-covariance matrix)

2 E (x′y) is a K × 1 vector of population covariances

Example: apply this procedure using linear algebra to yi = βxi + ui?
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Estimation follows from identification

From identification ⇒ apply the random sample correspondent

Replace population means (expected values) with sample means

OLS estimator:

β̂ =

(
N−1

N∑
i=1

x′ixi

)−1(
N−1

N∑
i=1

x′iyi

)
= (X′X)−1X′Y

X is N × K with i th row xi

Y is N × 1 with i th entry yi
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Consistency

Consistency of OLS estimator
Under OLS.1 and OLS.2, OLS consistently estimates β, or

plimN→∞(β̂) = β

plimN→∞(β̂) = plim

(N−1
N∑
i=1

x′ixi

)−1(
N−1

N∑
i=1

x′iyi

)
=

(
plim N−1

N∑
i=1

x′ixi

)−1

plim

(
N−1

N∑
i=1

x′iyi

)
= [E (x′x)]−1E (x′y) = β
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Efficiency or precision of the estimator

Standard errors account for uncertainty in estimated coefficients

From the estimator, replace y with the true population model

β̂ = [E (x′x)]−1E (x′y)
= [E (x′x)]−1E (x′x)β + [E (x′x)]−1E (x′u)
= β + [E (x′x)]−1E (x′u)

We can therefore write:

β̂ − β = [E (x′x)]−1E (x′u) (3)

If OLS assumptions are:

Not valid ⇒ bias (does not converge to 0 as n → ∞).

Valid ⇒ sampling error (→ 0 as n → ∞).
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Asymptotic distribution of OLS

Start from equation (3) and write the sample correspondent

√
N(β̂ − β) =

(
N−1

N∑
i=1

x′ixi

)−1(
N−1/2

N∑
i=1

x′iui

)

(Strong) Law of large numbers (LLN)
Let X1,X2, ... be a random sample of size n – a sequence of independent
and identically distributed (i.i.d.) random variables drawn from a
distribution with E [X ] = µ.

According to the LLN, the sample average converges almost surely to the
expected value:

Pr
[
lim
x→∞

X n = µ
]
= 1
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Asymptotic distribution of OLS: revision

Start from equation (3) and write the sample correspondent

√
N(β̂ − β) =

(
N−1

N∑
i=1

x′ixi

)−1(
N−1/2

N∑
i=1

x′iui

)

(Lindeberg-Lévy) Central limit theorem (CLT)
Let X1,X2, ... be a random sample of size n – a sequence of independent
and identically distributed (i.i.d.) random variables drawn from a
distribution with E [X ] = µ and Var [X ] = σ2 < ∞.

As n → ∞,

√
n
(
X̄n − µ

) d−→ N (0, σ2) (4)
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Asymptotic distribution of OLS

To get the limiting distribution of OLS, start from equation (3)

√
N(β̂ − β) =

(
N−1

N∑
i=1

x′ixi

)−1(
N−1/2

N∑
i=1

x′iui

)

The right-hand side is the product of two elements

1 Apply the LLN to the first element

A = E (x′ixi ) (5)

2 Apply the CLT to the second element

N−1/2
N∑
i=1

x′iui
d→ Normal(0,B) (6)

B = Var(x′iui ) = E (u2
i x

′
ixi )
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Asymptotic distribution of OLS

We can then write

√
N(β̂ − β) = A−1

(
N−1/2

N∑
i=1

x′iui

)

Asymptotic distribution of OLS estimator
From (6) and (5)

√
N(β̂ − β)

d→ Normal(0,A−1BA−1)

where the variance matrix, A−1BA−1, is a robust sandwich form.

The variance matrix contains the variance of each β estimated in the
main diagonal ⇒ their square roots are the standard errors
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Homoskedasticity

We can impose further assumptions – one example is homoskedasticity

Errors are homoskedastic
Sufficient condition is that

E (u2|x) = σ2

We can then write the variance of B as

E (u2x′x) = σ2E (x′x)

If we add homoskedasticity, then

B = σ2A

(Unrealistic) simplification of the variance of the estimator
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Violations of homoskedasticity

Whether homoskedasticity is satisfied is always an empirical issue

Homoskedasticity is often violated!
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Robust inference

Steps:

1 Estimate β̂ and residuals û

2 Apply the estimator for Âvar(β̂)

Avar(β̂) is estimated with the sandwich form:

Âvar(β̂) = Â−1B̂Â
−1

/N

=
N

(N − K )

(
N∑
i=1

x′ixi

)−1( N∑
i=1

û2
i x

′
ixi

)(
N∑
i=1

x′ixi

)−1
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Additional corrections: clustering

Used when observations are grouped into clusters

Firms, households, schools, villages

The observations within each cluster may be correlated

Violates the assumption of independence ⇒ underestimate s.e.
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Normality of the error term

Do we need to assume normality of the error term?

u|x1, ..., xK ∼ Normal(0, σ2)

Normality is not needed for large-sample inference

Normality underlies exact inference

So why assuming normality?
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Parametric versus non-parametric s.e.

Why non-parametric? ⇒ unsure about the (parametric) formula for s.e.

{(y1, x1), ..., (yN , xN)} is the sample

Bootstrap procedure:

1 Obtain B different random samples from this sample using resampling
with replacement

2 Generate estimates for each B: θ̂1, .., θ̂B

3 Estimate the variance of these estimates ⇒ tells us about how much
variation there is in the estimates

4 Square root is called bootstrap standard error

5 Empirical percentiles can be used as confidence intervals (see empirical
cdf)
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Parametric versus non-parametric s.e.

Why non-parametric? ⇒ unsure about the (parametric) formula for s.e.
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Causal effects versus forecasting

If we are interested in forecasting, then we should consider if our
model fit the data well

R2 is a goodness-of-fit measure

ρ2 = 1 − σ2
u/σ

2
y

It depends on the unconditional variance

σ2
y = N−1

∑
i

(yi − ȳi )
2

It ranges between 0 and 1, with 1 = perfectly fitting the data

Careful in the use of R2, we are interested in derivatives!
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APPLICATION: 401(k) pension plan

In the US, a 401(k) plan is a defined-contribution pension plan

Retirement contributions are provided by an employer, deducted from
the employee’s paycheck before taxation and limited to a maximum
pre-tax annual contribution.

The model with constant partial effects is

prate = β0 + β1mrate + β2age + β3ltotemp + β4sole + u

prate: firm participation rate
mrate: amount the firm contributes for each $ put in by the employee
age: age of the plan
ltotemp: log of total firm employment
sole: dummy variable for the plan being the only retirement option

Data in 401KPART.DTA.
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Describe your data

. use 401kpart

. des

Contains data from C:\mitbook1_2e\statafiles\401kpart.dta

obs: 4,075

vars: 10 2 Nov 2005 15:30

size: 138,550

--------------------------------------------------------------------------------

storage display value

variable name type format label variable label

--------------------------------------------------------------------------------

partic float %9.0g # employees partic. in 401(k)

totemp float %9.0g # worldwide firm employees

employ float %9.0g # employees eligible for 401(k)

mrate float %9.0g plan match rate, per $

prate float %9.0g partic/employ

age byte %9.0g age of the plan

sole byte %9.0g =1 if only pension plan

ltotemp float %9.0g log(totemp)

agesq float %9.0g age^2

ltotempsq float %9.0g ltotemp^2

--------------------------------------------------------------------------------

Sorted by:

48
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Describe your data

Check for variation in your data

Look at means and standard deviations

First check for multicollinearity
EXAMPLE: Firm participation rates in 401(k) plans and the firm match

rate.
. sum prate mrate age ltotemp sole

Variable | Obs Mean Std. Dev. Min Max
-------------�--------------------------------------------------------

prate | 4075 .840607 .1874841 .0036364 1
mrate | 4075 .463519 .4187388 0 2
age | 4075 8.186503 9.257011 1 71

ltotemp | 4075 6.97439 1.539165 4.65396 13.00142
sole | 4075 .3693252 .4826813 0 1

41
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Estimate the linear model with constant effects

. reg prate mrate age ltotemp sole, robust

Linear regression Number of obs � 4075
F( 4, 4070) � 202.82
Prob � F � 0.0000
R-squared � 0.1755
Root MSE � .17033

------------------------------------------------------------------------------
| Robust

prate | Coef. Std. Err. t P�|t| [95% Conf. Interval]
-------------�----------------------------------------------------------------

mrate | .1072729 .0060035 17.87 0.000 .0955027 .1190432
age | .0037 .0002493 14.84 0.000 .0032113 .0041887

ltotemp | -.0281719 .0021148 -13.32 0.000 -.0323181 -.0240257
sole | .0177024 .0059192 2.99 0.003 .0060977 .0293072
_cons | .9505378 .0149728 63.48 0.000 .9211829 .9798927

------------------------------------------------------------------------------

42
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Introducing non-linearities

What happens to interpretions?

. gen mrateage � mrate*age

. gen mrateltotemp � mrate*ltotemp

. reg prate mrate age mrateage ltotemp mrateltotemp sole, robust

Linear regression Number of obs � 4075
F( 6, 4068) � 156.51
Prob � F � 0.0000
R-squared � 0.1940
Root MSE � .16845

------------------------------------------------------------------------------
| Robust

prate | Coef. Std. Err. t P�|t| [95% Conf. Interval]
-------------�----------------------------------------------------------------

mrate | -.0014222 .0275289 -0.05 0.959 -.055394 .0525496
age | .0066224 .0004247 15.59 0.000 .0057898 .007455

mrateage | -.0054106 .0005122 -10.56 0.000 -.0064148 -.0044065
ltotemp | -.0390588 .0032932 -11.86 0.000 -.0455153 -.0326023

mrateltotemp | .0240843 .0044453 5.42 0.000 .0153691 .0327995
sole | .0170137 .0058649 2.90 0.004 .0055153 .0285121
_cons | 1.001494 .0219434 45.64 0.000 .9584733 1.044515

------------------------------------------------------------------------------

43
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De-meaning to simplify interpretation

. gen mrateage0 � mrate*(age - 8.19)

. gen mrateltotemp0 � mrate*(ltotemp - 6.974)

. reg prate mrate age mrateage0 ltotemp mrateltotemp0 sole, robust

Linear regression Number of obs � 4075
F( 6, 4068) � 156.51
Prob � F � 0.0000
R-squared � 0.1940
Root MSE � .16845

------------------------------------------------------------------------------
| Robust

prate | Coef. Std. Err. t P�|t| [95% Conf. Interval]
-------------�----------------------------------------------------------------

mrate | .1222283 .0066737 18.32 0.000 .1091443 .1353124
age | .0066224 .0004247 15.59 0.000 .0057898 .007455

mrateage0 | -.0054106 .0005122 -10.56 0.000 -.0064148 -.0044065
ltotemp | -.0390588 .0032932 -11.86 0.000 -.0455153 -.0326023

mrateltot~p0 | .0240843 .0044453 5.42 0.000 .0153691 .0327995
sole | .0170137 .0058649 2.90 0.004 .0055153 .0285121
_cons | 1.001494 .0219434 45.64 0.000 .9584733 1.044515

------------------------------------------------------------------------------

44
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OLS with heteroskedastic s.e.

. reg prate mrate age ltotemp sole, robust

Linear regression Number of obs � 4075
F( 4, 4070) � 202.82
Prob � F � 0.0000
R-squared � 0.1755
Root MSE � .17033

------------------------------------------------------------------------------
| Robust

prate | Coef. Std. Err. t P�|t| [95% Conf. Interval]
-------------�----------------------------------------------------------------

mrate | .1072729 .0060035 17.87 0.000 .0955027 .1190432
age | .0037 .0002493 14.84 0.000 .0032113 .0041887

ltotemp | -.0281719 .0021148 -13.32 0.000 -.0323181 -.0240257
sole | .0177024 .0059192 2.99 0.003 .0060977 .0293072
_cons | .9505378 .0149728 63.48 0.000 .9211829 .9798927

------------------------------------------------------------------------------
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OLS with bootstrap s.e.: 100 repetitions

. bootstrap, rep(100): reg prate mrate age ltotemp sole 
(running regress on estimation sample) 
 
Bootstrap replications (100) 
 
Linear regression                                       Number of obs =  4,075 
                                                        Replications  =    100 
                                                        Wald chi2(4)  = 750.84 
                                                        Prob > chi2   = 0.0000 
                                                        R-squared     = 0.1755 
                                                        Adj R-squared = 0.1747 
                                                        Root MSE      = 0.1703 
 
------------------------------------------------------------------------------ 
             |   Observed   Bootstrap                         Normal-based 
       prate | coefficient  std. err.      z    P>|z|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
       mrate |   .1072729   .0067057    16.00   0.000       .09413    .1204159 
         age |      .0037   .0002677    13.82   0.000     .0031754    .0042246 
     ltotemp |  -.0281719   .0019182   -14.69   0.000    -.0319315   -.0244123 
        sole |   .0177024   .0059831     2.96   0.003     .0059757    .0294291 
       _cons |   .9505378    .013466    70.59   0.000     .9241449    .9769307 
------------------------------------------------------------------------------ 
 
. bootstrap, rep(250): reg prate mrate age ltotemp sole 
(running regress on estimation sample) 
 
Bootstrap replications (250) 
 
Linear regression                                       Number of obs =  4,075 
                                                        Replications  =    250 
                                                        Wald chi2(4)  = 947.58 
                                                        Prob > chi2   = 0.0000 
                                                        R-squared     = 0.1755 
                                                        Adj R-squared = 0.1747 
                                                        Root MSE      = 0.1703 
 
------------------------------------------------------------------------------ 
             |   Observed   Bootstrap                         Normal-based 
       prate | coefficient  std. err.      z    P>|z|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
       mrate |   .1072729   .0060232    17.81   0.000     .0954677    .1190781 
         age |      .0037   .0002456    15.06   0.000     .0032186    .0041814 
     ltotemp |  -.0281719   .0022201   -12.69   0.000    -.0325231   -.0238207 
        sole |   .0177024   .0059358     2.98   0.003     .0060685    .0293363 
       _cons |   .9505378   .0158509    59.97   0.000     .9194707    .9816049 
------------------------------------------------------------------------------ 
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OLS with bootstrap s.e.: 500 repetitions

. bootstrap, rep(500): reg prate mrate age ltotemp sole 
(running regress on estimation sample) 
 
Bootstrap replications (500) 
 
Linear regression                                       Number of obs =  4,075 
                                                        Replications  =    500 
                                                        Wald chi2(4)  = 900.30 
                                                        Prob > chi2   = 0.0000 
                                                        R-squared     = 0.1755 
                                                        Adj R-squared = 0.1747 
                                                        Root MSE      = 0.1703 
 
------------------------------------------------------------------------------ 
             |   Observed   Bootstrap                         Normal-based 
       prate | coefficient  std. err.      z    P>|z|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
       mrate |   .1072729   .0058201    18.43   0.000     .0958656    .1186802 
         age |      .0037   .0002511    14.74   0.000     .0032078    .0041921 
     ltotemp |  -.0281719    .002168   -12.99   0.000     -.032421   -.0239228 
        sole |   .0177024   .0059192     2.99   0.003     .0061011    .0293037 
       _cons |   .9505378   .0152011    62.53   0.000     .9207442    .9803314 
------------------------------------------------------------------------------ 
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OLS with bootstrap s.e.: 1000 repetitions

. bootstrap, rep(1000): reg prate mrate age ltotemp sole 
(running regress on estimation sample) 
 
Bootstrap replications (1,000) 
 
Linear regression                                       Number of obs =  4,075 
                                                        Replications  =  1,000 
                                                        Wald chi2(4)  = 802.62 
                                                        Prob > chi2   = 0.0000 
                                                        R-squared     = 0.1755 
                                                        Adj R-squared = 0.1747 
                                                        Root MSE      = 0.1703 
 
------------------------------------------------------------------------------ 
             |   Observed   Bootstrap                         Normal-based 
       prate | coefficient  std. err.      z    P>|z|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
       mrate |   .1072729   .0060208    17.82   0.000     .0954724    .1190735 
         age |      .0037   .0002391    15.47   0.000     .0032313    .0041687 
     ltotemp |  -.0281719   .0021217   -13.28   0.000    -.0323303   -.0240134 
        sole |   .0177024   .0060789     2.91   0.004     .0057879    .0296169 
       _cons |   .9505378   .0150687    63.08   0.000     .9210037    .9800719 
------------------------------------------------------------------------------ 
 
. 
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OLS with bootstrap 95% C.I.: 100 repetitions
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OLS with bootstrap 95% C.I.: 500 repetitions
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OLS with bootstrap 95% C.I.: 1000 repetitions
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What is OLS recovering?

Assume E [y |x ] = f (x), such that y = f (x) + ϵ where E (ϵ|x) = 0

Look at square deviations from y

(y − xb)2 = [f (x) + e − xb]2

= [f (x)− xb]2 + 2[f (x)− xb] · e + e2

E [(y − xb)2] = E{[f (x)− xb]2}+ σ2
e

Because β minimizes E [(y − xb)2], it also solves

min
b∈RK

E{[f (x)− xb]2}

(because σ2
e does not depend on b).
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What is OLS recovering?

xβ is the best mean squared error approximation to the true
conditional mean function µ(x) = E (y |x).
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A parallel with prediction (statistical learning)

Focus on polynomial regression:

E [y |x ] = β0 + β1x + β2x
2 + β3x3 + ...
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Choosing a model E [Y |x ]

E [y |x ] = f (x)

Assume f (x) minimizes E [(Y − g(X ))2|X ] over all functions g at all
points X = x .

ϵ = y − f (x) is the irreducible error
Even if we knew f (x), we would still make errors in prediction, since at
each X = x there is typically a distribution of possible Y values.

Bias-variance trade-off: for any estimate f̂ (x) of f (x):

E [(Y − f̂ (X ))2|X = x ] = [f (x)− f̂ (x)]2︸ ︷︷ ︸
bias (reducible)

+ Var(ϵ)︸ ︷︷ ︸
variance (irreducible)
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Choosing a model Y = f (x)
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Global versus local fitting

Balance the bias-variance trade-off:

↑ flexibility of our model ⇒ overfit the data and ↑ the variance.

↓ flexibility of our model ⇒ poorly fit the data and ↑ our bias.

Motivation

We are interested in the association between sex hormone binding globulin
(SHBG) and age in years for males 6-80 years old from the NHANES
2015-2016 cycle (n = 3390 with SHBG)*. The scatterplot suggests there is
some sort of non-linear trend:
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*Note: NHANES uses a complex, multistage, probability sampling design to mirror the US
population, but will ignore this for our example. Also, all individuals 80+ are given an age of 80.
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Global versus local fitting

Balance the bias-variance trade-off:

↑ flexibility of our model ⇒ overfit the data and ↑ the variance.

↓ flexibility of our model ⇒ poorly fit the data and ↑ our bias.

Linear Regression

One modeling strategy from class would be simple linear regression:
mod_lm <- lm(SHBG~RIDAGEYR, data=dat)
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We can see that our SLR does not fit the data very well.
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Global versus local fitting

Balance the bias-variance trade-off:

↑ flexibility of our model ⇒ overfit the data and ↑ the variance.

↓ flexibility of our model ⇒ poorly fit the data and ↑ our bias.

Polynomial Regression

Another modeling strategy may be polynomial regression (i.e., including
higher order terms of X ):
mod_poly2 <- lm(SHBG~poly(RIDAGEYR,2, raw=T), data=dat) # Order 2
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We see the polynomial models are better fits than the SLR, but there may
be concerns with poor fit (Order 2) or overfitting (Order 4).

BIOS 6618 (CU Anschutz) Introduction to Splines in Linear Regression 6 / 25
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Polynomial vs spline regression

Limitation of polynomial regression: non-locality

Fitted regression at any arbitrary point x depends on the data across
the entire range
Changes to observed values near the boundary (e.g., min or max of x)
can lead to changes in the fitted function far from that value.

Spline regression: partition x into smaller intervals based on an
arbitrary points and fit localized polynomials.

Spline regression

11

• Start by fitting the polynomial to different bins/parts of data. Avoid using one model on the entire dataset.
• The piecewise functions can remain constant only over an interval of data.
• The different polynomials fitted are always joined at the boundary to avoid discontinuity. The joining points are 

called “knots”. 
• We place more knots in places where we feel that the function might vary most rapidly, and place fewer knots 

where it seems more stable.

Figure 9 : Without Spline Regression Figure 10 : With Spline Regression

Knot 1

Knot 2
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Spline regression

Knots (k)
Points where the different piecewise polynomials are joined.
Divide the line into (k + 1) parts.

Degrees (d): degree of the polynomial in each part.

Spline: OLS with polynomial expression for each segment
Example: k = 2, d = 2

y = β0 + β1x + β2x
2 + β3f (x , k1) + β4f (x , k2) + ϵ

where for example

f (x , ki ) = max(0, x − ki )
2

β1 captures the overall linear trend.
β2 captures the overall quadratic trend.
β3 (β4) captures additional curvature after k1 (k2).
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Spline regression: quadratic spline
Spline regression - Example 

13

• The relation between the variables is not linear. Observe a 
deviation in data at x=6 and x=9. 

• To apply spline regression, we will split the data into 3 different 
bins. x=1 to 6, x=7-9 and x=10-15 and fit individual polynomials. 
They would be joined together at x=6 and x=9 which we call 
“knots”.

• Fitting Spline in R :

1. lm(data$y ~ bs(data$x, knots=c( ))) ß Specify knots

2. lm(data$y ~ bs(data$x, df= , degree= )) ß Specify df and degree

• The place of knot can be found using :   
     attr(bs(data$x, df = ,degree=), "knots")

Figure 11 
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Polynomial regression versus spline

Data points Linear Higher degree polynomials Spline

Motivation

We are interested in the association between sex hormone binding globulin
(SHBG) and age in years for males 6-80 years old from the NHANES
2015-2016 cycle (n = 3390 with SHBG)*. The scatterplot suggests there is
some sort of non-linear trend:
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*Note: NHANES uses a complex, multistage, probability sampling design to mirror the US
population, but will ignore this for our example. Also, all individuals 80+ are given an age of 80.
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Polynomial regression versus spline

Data points Linear Higher degree polynomials Spline

Linear Regression

One modeling strategy from class would be simple linear regression:
mod_lm <- lm(SHBG~RIDAGEYR, data=dat)
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We can see that our SLR does not fit the data very well.
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Polynomial regression versus spline

Data points Linear Higher degree polynomials Spline

Polynomial Regression

Another modeling strategy may be polynomial regression (i.e., including
higher order terms of X ):
mod_poly2 <- lm(SHBG~poly(RIDAGEYR,2, raw=T), data=dat) # Order 2
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We see the polynomial models are better fits than the SLR, but there may
be concerns with poor fit (Order 2) or overfitting (Order 4).
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Polynomial regression versus spline

Data points Linear Higher degree polynomials SplineNatural Cubic Spline Example: 99.99% CI
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Given large n, using 99.99% CI to show interval on plot for ns(RIDAGER, df=4) example.
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APPLICATION: Effect of institutions on economic
performance (Acemoglu et al. AER 2001)

Interested in studying the causal effect of institutions on GDP:

GDPi = β0 + β1Institutionsi + Xγ + ϵi

Institutions are the humanly devised constraints that structure
political, economic and social interaction (North JEP 1991)

informal constraints: sanctions, taboos and codes of conduct,
customs and traditions

formal rules: constitutions and laws, property rights

Countries with better institutions will

invest more in physical and human capital + more efficient use

Correlation or causality?
59



GDP per capita and current institutions
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GDP per capita and current institutions

OLS estimates could be biased upwards
1 rich countries can afford or prefer better institutions (reverse causality)
2 unobserved determinants of both variables (omitted variable bias)
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GDP per capita and current institutions

OLS estimates could be biased upwards
1 rich countries can afford or prefer better institutions (reverse causality)
2 unobserved determinants of both variables (omitted variable bias)
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IV: identification when orthogonality fails

No such thing as an OLS or IV “model”
1 OLS and IV are different estimation methods that can be applied to

the same model

Population model is the standard linear model

y = xβ + u

x is 1 × K and β is K × 1

Instrumental variable: z = (z1, z2, ..., zL) be 1 × L (call it the )

Suppose for the moment that L = K
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Identification and exclusion restriction (IV.1)

Follow the usual steps for identification in linear models

y = xβ + u

z′y = z′xβ + z′u
E (z′y) = E (z′x)β + E (z′u)

Exclusion restriction or instrument exogeneity

E (z′u) = 0

Same approach of orthogonality in OLS
Used to cancel out the error term using expected values
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Interpretation of exclusion restriction

z contains all exogenous elements of x

Example: xK is possibly endogenous and z1 as an IV for xK , then

x = (1, x2, ..., xK−1, xK )

z = (1, x2, ..., xK−1, z1)

xK is excluded from z

If one or more elements of x is correlated with u, z must contain some
outside variables

The number of these outside variables (instruments) is at least equal to
the number of endogenous variables
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Rank condition (IV.2)

Using the exclusion restriction we can write:

E (z′y) = E (z′x)β
β = [E (z′x)]−1E (z′y) (7)

β is identified if we assume a rank condition for E (z′x)

Rank condition or instrument relevance

rank E (z′x) = K

Note that IV.1 and IV.2 extends the conditions for OLS

OLS is just a special IV case where z = x

All results on consistency and inference follows
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Testing for the rank condition

Assume we have a single endogenous explanatory variable, xK

1 Write the reduced form of xK as

xK = δ1 + δ2x2 + ...+ δK−1xK−1 + θ1z1 + rk (8)

This is often called the first-stage regression
By definition, we require orthogonality to be valid

2 Rank condition holds if and only if

θ1 ̸= 0 (9)

Rule of thumb: F statistic > 10
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APPLICATION: Effect of institutions on
economic performance – IV strategy

GDPi = β0 + β1Institutionsi + Xγ + ϵi

IV for Institutionsi : mortality rates faced by the settlers during
colonization as an instrument

Valid if mortality rates have no effect on income today other than
through their influence on institutional development.
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Income and settler mortality (reduced-form)
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The effect of institutions on GDP per capita

IV estimate is precisely estimated and large

Compare with OLS to understand bias (0.54 for base sample)
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Can we use multiple instruments?

In some cases, we have more instruments than we need

Example: if we can use mother’s education as an IV, why not father’s
education?

Identification versus overidentification:

1 When L > K ⇒ model is potentially overidentified

2 When L = K ⇒ model is just identified

When L > K , we can apply a flexible IV estimator, called Two Stage
Least Squares (2SLS)
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Two Stage Least Squares (2SLS)

y = xβ + u

E (z′u) = 0
L = dim(z) ≥ dim(x) = K

The best vector of instruments is the vector of linear projections of
each element of x on z

x
1×K

= z
1×L

· Π
L×K

+ r
1×K

E (z′r) = 0

Intuition behind 2SLS: if you have more than one instrument per
endogenous variable, you can always recreate a single instrument using
linear combinations of multiple instruments!
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2SLS in practice: procedure

1 First stage
Run the regression X on Z to obtain Π̂ = (Z′Z)−1Z′X.
Notice that exogenous variables act as their own instrument
Obtain the vector fitted values

X̂ = ZΠ̂
= Z(Z′Z)−1Z′X

2 Second stage: run the regression of y on fitted values x̂

β̂2SLS =

(
N−1

N∑
i=1

x̂′i x̂i

)−1(
N−1

N∑
i=1

x̂′iyi

)
= (X̂′X̂)−1X̂′Y
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Intepretation of 2SLS assumptions

IV.1 – Exogenous Instruments

E (̂x′u) = E (z′u) = 0

IV.2 – Rank Condition:

a) rank E (z′z) = L: rules out perfect collinearity among the exogenous
variables (first stage)

b) rank E (̂x′x̂) = K : it corresponds to rank E (z′x) = K (second stage)

c) L ≥ K : I need at least one instrument for each endogenous variable
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APPLICATION: Returns to schooling

Estimating the return to schooling via simple regression:

log(wagei ) = β0 + β1educi + ui

OLS estimate biased: educi is clearly endogenous (orthogonality)

Suggestions for z - are they valid as IV?

mother’s education
number of siblings
distance to the nearest college at age 16
z is a randomly assigned education grant during high school
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APPLICATION: Returns to schooling

Angrist and Krueger (QJE 1991) propose z binary, z = 1 if born in first
quarter of year

Individuals born in the beginning of the year start school at older age

→ can drop out after completing less years of schooling than
individuals born near the end of the year

What do I need for the validity of this instrument?

1 Relevance: the quarter of birth is correlated with years of education -
true?

2 Exclusion restriction: Quarter of birth is not correlated with
unobserved determinants of wage - true?
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APPLICATION: Returns to schooling
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APPLICATION: Returns to schooling

If identification strategy for IV is valid, compare OLS and 2SLS estimates
to understand bias in OLS estimates
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Weak instrument

You find an instrumental variable, z , presenting these two properties:

1 Exclusion restriction is valid

Cov(z , ϵ) = 0

2 Relevance is valid
Cov(z , x) ̸= 0

but covariance is small (z is a weak instrument)
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Intuition behind weak instruments

Identification of β1 in a simple case: y = β0 + β1x + ϵ

Apply the covariance operator

Cov(z , y) = β1Cov(z , x) + Cov(z , ϵ)

Identify β1 using exogeneity assumption

β1 =
Cov(z , y)

Cov(z , x)

β1 is identified!
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IV and OLS comparison: weak instruments

We can derive the estimators for OLS and IV:

plim β̂1,IV = β1 +
σϵ
σx

· Corr(z , ϵ)
Corr(z , x)

plim β̂1,OLS = β1 +
σϵ
σx

· Corr(x , ϵ)

If z is a weak instrument, IV can produce a larger asymptotic bias
than OLS

Common to see IV estimates larger in magnitude than OLS estimates

Weak instruments lead to large asymptotic standard errors
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PROOF: IV and OLS comparison

Replacing the population covariances with the sample covariances

β̂1,IV =
N−1∑N

i=1(zi − z̄)(yi − ȳ)

N−1
∑N

i=1(zi − z̄)(di − d̄)

= β1 +
N−1∑N

i=1(zi − z̄)ϵi

N−1
∑N

i=1(zi − z̄)(di − d̄)

Compare with OLS estimator

β̂1,OLS = β1 +
N−1∑N

i=1(di − d̄)ϵi

N−1
∑N

i=1(di − d̄)2

Then use the rule Cov(d , ϵ) = Corr(d , ϵ)σdσϵ
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APPLICATION: Angrist and Evans (AER, 1998)
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Data

Data are a subset from Angrist and Evans (AER, 1998), LABSUP.DTA.

4 4. Application: Endogeneity of Children in
Labor Supply

Data are a subset from Angrist and Evans (AER, 1998), LABSUP.DTA.

. use labsup.dta

. * Women are black or Hispanic (possibly both).

. des hours nonmomi kids educ age black hispan samesex

storage display value

variable name type format label variable label

-------------------------------------------------------------------------------

hours byte %8.0g hours of work per week, mom

nonmomi float %9.0g ’non-mom’ income, $1000s

kids byte %8.0g number of kids

educ byte %8.0g mom’s years of education

age byte %8.0g age of mom

black byte %8.0g =1 of black

hispan byte %8.0g =1 if hispanic

samesex byte %8.0g first two kids are of same sex

41
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Summarize variables

. sum hours nonmomi kids educ age black hispan

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

hours | 31857 21.22011 19.49892 0 99

nonmomi | 31857 31.7618 20.41241 -39.93675 157.438

kids | 31857 2.752237 .9771916 2 12

educ | 31857 11.00534 3.305196 0 20

age | 31857 29.74175 3.613745 21 35

-------------+--------------------------------------------------------

black | 31857 .4129705 .4923753 0 1

hispan | 31857 .593182 .4912481 0 1

. count if hours == 0

13068

. count if hours == 40

11245

. * hours has lots of discreteness. Classical linear model

. * are clearly violated.
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Tabulate number of kids

. tab kids

number of |

kids | Freq. Percent Cum.

------------+-----------------------------------

2 | 16,215 50.90 50.90

3 | 10,014 31.43 82.33

4 | 3,736 11.73 94.06

5 | 1,374 4.31 98.37

6 | 323 1.01 99.39

7 | 134 0.42 99.81

8 | 47 0.15 99.96

9 | 6 0.02 99.97

10 | 4 0.01 99.99

11 | 2 0.01 99.99

12 | 2 0.01 100.00

------------+-----------------------------------

Total | 31,857 100.00

. tab samesex

first two |

kids are of |

same sex | Freq. Percent Cum.

------------+-----------------------------------

0 | 15,840 49.72 49.72

1 | 16,017 50.28 100.00

------------+-----------------------------------

Total | 31,857 100.00
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Gender of the first two kids

. tab kids

number of |

kids | Freq. Percent Cum.

------------+-----------------------------------

2 | 16,215 50.90 50.90

3 | 10,014 31.43 82.33

4 | 3,736 11.73 94.06

5 | 1,374 4.31 98.37

6 | 323 1.01 99.39

7 | 134 0.42 99.81

8 | 47 0.15 99.96

9 | 6 0.02 99.97

10 | 4 0.01 99.99

11 | 2 0.01 99.99

12 | 2 0.01 100.00

------------+-----------------------------------

Total | 31,857 100.00

. tab samesex

first two |

kids are of |

same sex | Freq. Percent Cum.

------------+-----------------------------------

0 | 15,840 49.72 49.72

1 | 16,017 50.28 100.00

------------+-----------------------------------

Total | 31,857 100.00

43

Not a surprise the distribution is around 50/50

Indicative of randomness
Not valid for all countries (i.e. sex-selective abortion)

87



OLS estimates. * First use OLS with heteroskedasticity-robust standard errors:

. reg hours kids nonmomi educ age agesq black hispan, robust

Linear regression Number of obs = 31857

F( 7, 31849) = 377.87

Prob > F = 0.0000

R-squared = 0.0727

Root MSE = 18.779

------------------------------------------------------------------------------

| Robust

hours | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

kids | -2.325836 .1155164 -20.13 0.000 -2.552253 -2.099419

nonmomi | -.0578328 .0053515 -10.81 0.000 -.068322 -.0473436

educ | .5860083 .0374881 15.63 0.000 .5125302 .6594865

age | 2.048793 .4483823 4.57 0.000 1.169946 2.927639

agesq | -.0277198 .0076957 -3.60 0.000 -.0428036 -.012636

black | 1.058285 1.35088 0.78 0.433 -1.589492 3.706063

hispan | -5.114147 1.35152 -3.78 0.000 -7.763179 -2.465116

_cons | -10.44695 6.588891 -1.59 0.113 -23.36143 2.467528

------------------------------------------------------------------------------

. * Each child beyond the first two reduces estimated hours by about 2.3 hours,

. * other things fixed.
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Each child beyond the first two reduces estimated hours by about 2.3
hours, other things fixed
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Endogeneity: samesex as instrument. * But what if kids is endogenous?

. * Assume samesex is exogenous to the labor supply equation.

. * Is samesex partially correlated with kids?

. * Estimate the reduced form for kids (first-stage regression):

. reg kids samesex nonmomi educ age agesq black hispan, robust

Linear regression Number of obs = 31857

F( 7, 31849) = 437.80

Prob > F = 0.0000

R-squared = 0.1191

Root MSE = .91724

------------------------------------------------------------------------------

| Robust

kids | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

samesex | .0703744 .0102783 6.85 0.000 .0502285 .0905202

nonmomi | -.0027871 .000257 -10.85 0.000 -.0032907 -.0022834

educ | -.0853676 .0020296 -42.06 0.000 -.0893457 -.0813895

age | .0589312 .0203278 2.90 0.004 .019088 .0987744

agesq | 1.98e-06 .0003559 0.01 0.996 -.0006956 .0006995

black | .0128681 .0644422 0.20 0.842 -.113441 .1391772

hispan | -.0424722 .0644997 -0.66 0.510 -.1688941 .0839498

_cons | 2.010258 .2930274 6.86 0.000 1.435913 2.584603

------------------------------------------------------------------------------

. * Yes: Having the first two children the same gender means the expected

. * number of children is estimated to be .07 higher.
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IV estimates

Much bigger effect using IV, but only marginally statistically significant. * Now compute the IV (2SLS) estimates:

. ivreg hours nonmomi educ age agesq black hispan (kids = samesex), robust

Instrumental variables (2SLS) regression Number of obs = 31857

F( 7, 31849) = 304.81

Prob > F = 0.0000

R-squared = 0.0583

Root MSE = 18.924

------------------------------------------------------------------------------

| Robust

hours | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

kids | -4.878903 3.013547 -1.62 0.105 -10.78557 1.027766

nonmomi | -.0649179 .0099359 -6.53 0.000 -.0843926 -.0454432

educ | .368042 .2595992 1.42 0.156 -.1407823 .8768664

age | 2.200964 .4845126 4.54 0.000 1.2513 3.150627

agesq | -.0277443 .007744 -3.58 0.000 -.042923 -.0125657

black | 1.094986 1.376742 0.80 0.426 -1.603482 3.793454

hispan | -5.217758 1.381364 -3.78 0.000 -7.925284 -2.510232

_cons | -5.253976 9.037541 -0.58 0.561 -22.9679 12.45995

------------------------------------------------------------------------------

Instrumented: kids

Instruments: nonmomi educ age agesq black hispan samesex

------------------------------------------------------------------------------

. * Much bigger effect using IV, but only marginally statistically significant.
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Weak instrument

The partial correlation is even small

. corr kids samesex

(obs=31857)

| kids samesex

-------------+------------------

kids | 1.0000

samesex | 0.0358 1.0000

. * The partial correlation is even smaller. It’s not surprising the IV estimate

. * is much less precise than OLS.

. * A much larger sample size, as in Angrist and Evans, and another instrument

. * -- indicating a multiple second birth -- help a lot with precision.
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It’s not surprising the IV estimate is much less precise than OLS

A much larger sample size, as in Angrist and Evans, and another
instrument – indicating a multiple second birth – help a lot with
precision
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Testing for endogeneity of x

Consider the standard linear model with IV

y = xβ + u

E (z′u) = 0

How to test whether x is endogenous?

H0 : E (x′u) = 0

I can test for endogeneity only if I have an instrument!

1 Durbin-Wu-Hausman (DWH) test

2 Regression-based Hausman test
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Testing for endogeneity of x

1 Durbin-Wu-Hausman (DWH) test

Takes the null β̂2SLS − β̂OLS
p→ 0 and provide limiting distribution

If all elements of x are exogenous then 2SLS and OLS should differ
only due to sampling error.

2 Regression-based Hausman test
1 Regress each endogenous variable in xi on zi to obtain a vector of

residuals v̂i
2 Run the regression yi on xi , v̂i (control function approach)
3 Test the coefficients in front of v̂i are different from zero (if confirmed

then x presents endogeneity)
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Testing overidentifying restrictions

If more instruments than the number we need, we can test whether some
of them are exogenous.

From 2SLS: K exact moment conditions hold in the sample

N−1
N∑
i=1

x̂′i ûi = 0

Test for overidentifying restrictions checks whether these
conditions hold in the data

Rejection indicates that one or more IVs fail the exogeneity
requirement

We do not know which one though.

94



Labor supply application: OLS estimates

. * First use OLS to estimate the effects of children on hours worked:

. reg hours kids nonmomi educ age agesq black hispan, robust

Linear regression Number of obs � 31857
F( 7, 31849) � 377.87
Prob � F � 0.0000
R-squared � 0.0727
Root MSE � 18.779

------------------------------------------------------------------------------
| Robust

hours | Coef. Std. Err. t P�|t| [95% Conf. Interval]
-------------�----------------------------------------------------------------

kids | -2.325836 .1155164 -20.13 0.000 -2.552253 -2.099419
nonmomi | -.0578328 .0053515 -10.81 0.000 -.068322 -.0473436

educ | .5860083 .0374881 15.63 0.000 .5125302 .6594865
age | 2.048793 .4483823 4.57 0.000 1.169946 2.927639

agesq | -.0277198 .0076957 -3.60 0.000 -.0428036 -.012636
black | 1.058285 1.35088 0.78 0.433 -1.589492 3.706063
hispan | -5.114147 1.35152 -3.78 0.000 -7.763179 -2.465116
_cons | -10.44695 6.588891 -1.59 0.113 -23.36143 2.467528

------------------------------------------------------------------------------
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Labor supply application: 2SLS estimates
. * Now compute the IV (2SLS) estimates:

. ivreg hours nonmomi educ age agesq black hispan (kids = samesex), robust

Instrumental variables (2SLS) regression Number of obs = 31857

F( 7, 31849) = 304.81

Prob > F = 0.0000

R-squared = 0.0583

Root MSE = 18.924

------------------------------------------------------------------------------

| Robust

hours | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

kids | -4.878903 3.013547 -1.62 0.105 -10.78557 1.027766

nonmomi | -.0649179 .0099359 -6.53 0.000 -.0843926 -.0454432

educ | .368042 .2595992 1.42 0.156 -.1407823 .8768664

age | 2.200964 .4845126 4.54 0.000 1.2513 3.150627

agesq | -.0277443 .007744 -3.58 0.000 -.042923 -.0125657

black | 1.094986 1.376742 0.80 0.426 -1.603482 3.793454

hispan | -5.217758 1.381364 -3.78 0.000 -7.925284 -2.510232

_cons | -5.253976 9.037541 -0.58 0.561 -22.9679 12.45995

------------------------------------------------------------------------------

Instrumented: kids

Instruments: nonmomi educ age agesq black hispan samesex

------------------------------------------------------------------------------

. * Much bigger effect using IV, but only marginally statistically significant.
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Use two instruments in 2SLS

Use samesex and multi2nd (1 if second are twins) as IVs for kids.

Estimate the reduced form

. * Now use samesex and multi2nd as IVs for kids.

. * Estimate the reduced form:

. reg kids samesex multi2nd nonmomi educ age agesq black hispan, robust

Linear regression Number of obs � 31857
F( 8, 31848) � 410.77
Prob � F � 0.0000
R-squared � 0.1244
Root MSE � .91452

------------------------------------------------------------------------------
| Robust

kids | Coef. Std. Err. t P�|t| [95% Conf. Interval]
-------------�----------------------------------------------------------------

samesex | .07044 .0102481 6.87 0.000 .0503533 .0905267
multi2nd | .7632484 .0546856 13.96 0.000 .6560626 .8704342
nonmomi | -.0027879 .0002562 -10.88 0.000 -.0032901 -.0022858

educ | -.0853114 .0020267 -42.09 0.000 -.0892838 -.0813391
age | .0563395 .020282 2.78 0.005 .016586 .0960929

agesq | .0000436 .0003551 0.12 0.902 -.0006524 .0007396
black | .0105681 .0645589 0.16 0.870 -.1159698 .1371059
hispan | -.0420447 .0646128 -0.65 0.515 -.1686882 .0845988
_cons | 2.043467 .2924263 6.99 0.000 1.4703 2.616634

------------------------------------------------------------------------------
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Test relevance of instruments

. test samesex multi2nd

( 1) samesex � 0
( 2) multi2nd � 0

F( 2, 31848) � 117.38
Prob � F � 0.0000

. * Clearly the two IV candidates are partially correlated with kids,

. * both in the direction (positive) that we expect.

. * Get the reduced form residuals.

. predict v2h, resid

41

The two IV candidates are partially correlated with kids, both in the
direction (positive) that we expect.

Get the reduced form residuals: predict v2h, resid
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Hausman regression-based test

Run regression of y on endogenous variables and fitted residuals (v2h). * Test the null that kids is exogenous in the hours equation:

. reg hours kids nonmomi educ age agesq black hispan v2h, robust

Linear regression Number of obs � 31857
F( 8, 31848) � 330.79
Prob � F � 0.0000
R-squared � 0.0727
Root MSE � 18.779

------------------------------------------------------------------------------
| Robust

hours | Coef. Std. Err. t P�|t| [95% Conf. Interval]
-------------�----------------------------------------------------------------

kids | -2.986165 1.284302 -2.33 0.020 -5.503447 -.4688828
nonmomi | -.0596653 .0064263 -9.28 0.000 -.072261 -.0470696

educ | .5296332 .1154311 4.59 0.000 .3033839 .7558825
age | 2.08815 .4545537 4.59 0.000 1.197208 2.979093

agesq | -.0277261 .0076958 -3.60 0.000 -.0428101 -.0126422
black | 1.067778 1.350595 0.79 0.429 -1.57944 3.714995
hispan | -5.140945 1.352129 -3.80 0.000 -7.791169 -2.490721

v2h | .665256 1.290263 0.52 0.606 -1.86371 3.194222
_cons | -9.103833 7.093029 -1.28 0.199 -23.00644 4.798776

------------------------------------------------------------------------------

. * The test statistic is only about .52, so there is little evidence that kids

. * is endogenous.
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Test statistic for v2h is about .52: little evidence of endogeity of kids.
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Careful with s.e. ⇒ 2SLS estimates

Compute the 2SLS estimates to have correct s.e.
. * Now compute the 2SLS estimates:

. ivreg hours nonmomi educ age agesq black hispan (kids � samesex multi2nd),
robust

Instrumental variables (2SLS) regression Number of obs � 31857
F( 7, 31849) � 310.81
Prob � F � 0.0000
R-squared � 0.0717
Root MSE � 18.789

------------------------------------------------------------------------------
| Robust

hours | Coef. Std. Err. t P�|t| [95% Conf. Interval]
-------------�----------------------------------------------------------------

kids | -2.986165 1.28219 -2.33 0.020 -5.499307 -.473022
nonmomi | -.0596653 .0064235 -9.29 0.000 -.0722555 -.0470751

educ | .5296332 .1152961 4.59 0.000 .3036484 .755618
age | 2.08815 .4545798 4.59 0.000 1.197156 2.979144

agesq | -.0277261 .0076979 -3.60 0.000 -.0428143 -.012638
black | 1.067778 1.355563 0.79 0.431 -1.589178 3.724733
hispan | -5.140945 1.357096 -3.79 0.000 -7.800906 -2.480985
_cons | -9.103834 7.092956 -1.28 0.199 -23.0063 4.798632

------------------------------------------------------------------------------
Instrumented: kids
Instruments: nonmomi educ age agesq black hispan samesex multi2nd
------------------------------------------------------------------------------

. * Note that these are the same as the CF estimates.
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Careful with s.e. ⇒ 2SLS estimates

OLS makes use of the following:

√
N(β̂OLS − β) =

(
N−1

N∑
i=1

x′ixi

)−1(
N−1/2

N∑
i=1

x′iui

)

2SLS makes use of the following:

√
N(β̂2SLS − β) =

(
N−1

N∑
i=1

x̂′i x̂i

)−1(
N−1/2

N∑
i=1

x̂′iui

)
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