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Linear model setting

Parametric solution to the identification problem for f(y|x; 5) =
@ Focus on the conditional mean E[y|x; (]

@ The conditional mean is linear in parameters in terms of a
(well-defined) population

y = Bo+pix1+...+ Bk_1xk-1+u
x84+ u
Elylx] = x8=f(x)

e xis 1 x K and observed
e [ is the K x 1 vector of unknown slope parameters
@ u is an error term



Flexibility versus interpretation

Linear model can be fairly general as x can include nonlinear functions
(logarithms, squares, reciprocals and interactions)
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Flexibility versus interpretation

Flexibility comes at what cost?
@ We are interested in causal relationships = partial effect
@ How changing x causes a change in the outcome
e For a continuous variable x; = first derivative

Of (x)
xj

Average Partial Effect

Averages partial effects are across the sample distribution of x.




Flexibility versus interpretation: an example

Consider the following specifications and the APE w.r.t. match:
@ contribs = By + B1match + [Brincome + u

@ contribs = By + [S1match + [rincome + S3match - income + u

@ In the first, 8 captures the APE



Flexibility versus interpretation: an example

Consider the following specifications and the APE w.r.t. match:
@ contribs = By + B1match + [Brincome + u

@ contribs = By + [S1match + [rincome + S3match - income + u

@ In the first, 8 captures the APE
@ In the second, the APE is equal to 31 + B3 - income

e Flexibility comes at the cost of interpretation =

o Coefficients on level terms may become essentially meaningless

e APE becomes functions of observable characteristics



What is flexibility?

We compare parametric versus non-parametric approach:

e Non-parametric approach (kernel regression) performs local
smoothing

@ Linear models perform global smoothing

@ Let's see an example: relationship between wage and ability



Local smoothing

o Choice of bandwidth 0.05
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abil. measure, not standardized

Local-linear estimates
kernel = epanechnikov bandwidth = .05



Local smoothing

o Choice of bandwidth 0.20

log(wage)

-5 0 5
abil. measure, not standardized

Local-linear estimates
kernel = epanechnikov bandwidth = .2



Local smoothing

o Choice of bandwidth 0.50

log(wage)

-5 0 5
abil. measure, not standardized

Local-linear estimates
kernel = epanechnikov bandwidth = .5



Local smoothing

o Choice of bandwidth 2.00

log(wage)

-5 0 5
abil. measure, not standardized

Local-linear estimates
kernel = epanechnikov bandwidth = 2



Global smoothing: linear model linear in ability

O Observed = Fitted: linear

abil. measure, not standardized



Global smoothing: linear model cubic in ability

O Observed == Fitted: linear == Fitted: cubic

abil. measure, not standardized
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Global versus local smoothing

O Observed == Fitted: linear == Fitted: cubic == Fitted: Kernel

abil. measure, not standardized
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Ordinary Least Squares (OLS) setting

©® Population model
y=xB+u

e x is 1 x K (for notational convenience, x; is unity)

© Random sample
Yi =xiB+ uj

e For each random draw i: {(x;,y;):i=1,...,N}

@ Can we identify the parameters 37

e Think at the problem as a population problem using equation (1)

(1)

()
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Assumption OLS.0 — Linearity

y=xB+u

© Observable variables enter linearly in the equation

e We can call x5 a linear index

@ Error term (unobservable) is separable and additive

Violations
@ Model nonlinear in parameters may be more appropriate

e Example: the range of y is restricted, such as binary variables
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Identification steps

y=xB+u

@ u is unobserved = [ cannot be identified without assumptions

@ OLS trick: think about expected values using the following steps:
@ Multiply y by X’

Xy = (Xx)B+xu

@ Take the expected value:

EXy) = E(Xx)8+ E(Xu)
@ What assumptions are needed now?
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Assumption OLS.1 — Orthogonality

Orthogonality

E(Xu)=0

@ When x has an intercept (almost always), orthogonality includes the
following K conditions:

E(u) =

Cov(xj, u)

Il
o o

j=2,...K

@ OLS.1 allows deleting the last term in our derivation

E(Xy) = E(Xx)B+ EXu)=E(Xx)3
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Violations of orthogonality condition

Yi=a+ 6D; + €;

© Omitted variables: certain explanatory variables are excluded from
the regression model but are correlated with independent variables

D—Y

N

@ Measurement error: variables are measured with error
e D is uncorrelated with ¢, but | observe only D=D+vandvis
correlated with €

© Simultaneity: dependent variable causes dependent variables

D&—Y
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Assumption OLS.2 — No Perfect Collinearity

E(Xy) = E(Xx)8

To identify 5 = E(x'x) needs to be invertible

No Perfect Collinearity

rank E(X'x) = K

where the rank is the number of linearly independent rows or columns in
the matrix.
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Assumption OLS.2 — No Perfect Collinearity

E(Xy) = E(Xx)8

To identify 5 = E(x'x) needs to be invertible

No Perfect Collinearity

rank E(X'x) = K

where the rank is the number of linearly independent rows or columns in
the matrix.

e Violations:

o Examples?

e High correlation among regressors often cannot be avoided, but not a
violation of assumptions
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Under OLS.1 and OLS.2, § is identified

y=xp+u
e Multiply y by X' and take the expected value:
E(Xy) = E(Xx)B+ E(Xu)
E(Xy) = E(Xx)8 by OLS.1
B = [E(Xx)]*E(Xy) by OLS.2
@ Intuition:

@ E(x'x)is a K x K matrix of variances and covariances in the
population (variance-covariance matrix)

@ E(X'y)isa K x 1 vector of population covariances
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Under OLS.1 and OLS.2, § is identified

y=xp+u
e Multiply y by X' and take the expected value:
E(Xy) = E(Xx)B+ E(Xu)
E(Xy) = E(Xx)8 by OLS.1
B = [E(Xx)]*E(Xy) by OLS.2
@ Intuition:

@ E(x'x)is a K x K matrix of variances and covariances in the
population (variance-covariance matrix)

@ E(X'y)isa K x 1 vector of population covariances

e Example: apply this procedure using linear algebra to y; = 8x; + u;?
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Estimation follows from identification

From identification = apply the random sample correspondent

@ Replace population means (expected values) with sample means

@ OLS estimator:

N -1 N
B = (lex;-x,-) (lexf-y,)
i=1 i=1

= (XX)"XY

e Xis N x K with it" row x;

o Yis N x 1 with i entry y;
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Consistency

Consistency of OLS estimator
Under OLS.1 and OLS.2, OLS consistently estimates /3, or

P”mN—mo(B) =p

N -1 N
Plimnoo(B) = p/,-mKlex;x,-) (lex?Yf>]
i=1 i=1
N -1 N
- (p/im Nt fo-x,-) plim (N‘l in-y;)
i=1 i=1

= [EKx)]E(y) =5
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Efficiency or precision of the estimator

Standard errors account for uncertainty in estimated coefficients
From the estimator, replace y with the true population model
B = [EGX)]E(Xy)
= [E(X)]TE(XX)B + [E(Xx)] E(Xu)
= B+[ECX)]TE(X )

@ We can therefore write:

B-p = [EGX]E(Xu)

o If OLS assumptions are:

e Not valid = bias (does not converge to 0 as n — o).

e Valid = sampling error (— 0 as n — o).
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Asymptotic distribution of OLS

@ Start from equation (3) and write the sample correspondent

N -1 N
W(B —-p) = <N1 in-x,-) <N1/2 fo-u,-)
i=1 i=1
(Strong) Law of large numbers (LLN)

Let X1, X5, ... be a random sample of size n — a sequence of independent
and identically distributed (i.i.d.) random variables drawn from a
distribution with E[X] = pu.

According to the LLN, the sample average converges almost surely to the
expected value:

Pr[lim Y,,:u}zl

X—>00
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Asymptotic distribution of OLS: revision

e Start from equation (3) and write the sample correspondent

N -1 N
VN3 - B) = <N1 in-x,-) <N1/2 fo-u,-)
i=1 i=1

(Lindeberg-Lévy) Central limit theorem (CLT)

Let X1, X5, ... be a random sample of size n — a sequence of independent
and identically distributed (i.i.d.) random variables drawn from a
distribution with E[X] = p and Var[X] = 02 < oo.

As n — oo,

Vi (%o — ) L N(0,02) (4)
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Asymptotic distribution of OLS

e To get the limiting distribution of OLS, start from equation (3)

N -1 N
VR 5) - (N—l z) (N—w z)
=1 i=1

@ The right-hand side is the product of two elements

© Apply the LLN to the first element
A = E(Xx;) (5)
@ Apply the CLT to the second element
N
N~1/2 Z xu; % Normal(0, B) (6)
i=1

B = Var(xiu;) = E(u?Xx;)
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Asymptotic distribution of OLS

@ We can then write

N
W(B —-p) = AL (N_1/2 fo-u,-)
i=1

Asymptotic distribution of OLS estimator

From (6) and (5)

VN(B - B) % Normal(0, A"1BA™Y)

where the variance matrix, A"!BA~1, is a robust sandwich form.

@ The variance matrix contains the variance of each 3 estimated in the
main diagonal = their square roots are the standard errors
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Homoskedasticity

We can impose further assumptions — one example is homoskedasticity
Errors are homoskedastic

Sufficient condition is that

E(v?x) = o°

@ We can then write the variance of B as

E(u’X'x) = 02 E(Xx)

o If we add homoskedasticity, then

B = o2A

e (Unrealistic) simplification of the variance of the estimator
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Violations of homoskedasticity

Whether homoskedasticity is satisfied is always an empirical issue

Y, Yi

Errors Errors

Homoskedasticity Heteroskedasticity

o Homoskedasticity is often violated!
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Robust inference

@ Steps:
@ Estimate B and residuals i

@ Apply the estimator for Kv;r(ﬁ)

o Avar(f) is estimated with the sandwich form:

— A—1

Avar(B) = A7'BA /N

N N -1/ N ,
= (N—K)(ZX"Xi> <Zuix,~x,-

i=1
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Additional corrections: clustering

@ Used when observations are grouped into clusters

e Firms, households, schools, villages

@ The observations within each cluster may be correlated

e Violates the assumption of independence = underestimate s.e.
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Normality of the error term

@ Do we need to assume normality of the error term?

ulxi, ...,xx ~ Normal(0, o?)

@ Normality is not needed for large-sample inference
@ Normality underlies exact inference

e So why assuming normality?
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Parametric versus non-parametric s.e.

Why non-parametric? = unsure about the (parametric) formula for s.e.

e {(v1,x1), .., (¥n,xn)} is the sample
e Bootstrap procedure:

© Obtain B different random samples from this sample using resampling
with replacement

@ Generate estimates for each B: él, o [

© Estimate the variance of these estimates = tells us about how much
variation there is in the estimates

© Square root is called bootstrap standard error

© Empirical percentiles can be used as confidence intervals (see empirical

cdf)
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Parametric versus non-parametric s.e.

Why non-parametric? = unsure about the (parametric) formula for s.e.

Sample Size N B Bootstrap Estimate 6 Inference
Samples, each size n

|

|

i
bbbl

&5
?s
|
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Causal effects versus forecasting

@ If we are interested in forecasting, then we should consider if our
model fit the data well

R? is a goodness-of-fit measure

pP=1-0y/0;

@ It depends on the unconditional variance
oy =N (vi—5)
i
@ It ranges between 0 and 1, with 1 = perfectly fitting the data

Careful in the use of R?, we are interested in derivatives!
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APPLICATION: 401(k) pension plan

@ In the US, a 401(k) plan is a defined-contribution pension plan

e Retirement contributions are provided by an employer, deducted from
the employee's paycheck before taxation and limited to a maximum
pre-tax annual contribution.

@ The model with constant partial effects is

prate = By + [f1mrate + B2age + [sltotemp + [asole + u

prate: firm participation rate

mrate: amount the firm contributes for each $ put in by the employee
age: age of the plan

Itotemp: log of total firm employment

sole: dummy variable for the plan being the only retirement option

o Data in 401KPART.DTA.
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Describe your data

. use 401kpart
. des

Contains data from C:\mitbookl_2e\statafiles\40lkpart.dta

obs: 4,075

vars: 10 2 Nov 2005 15:30

size: 138,550

storage display value

variable name type format label variable label
partic float 7%9.0g # employees partic. in 401(k)
totemp float 7%9.0g # worldwide firm employees
employ float 7%9.0g # employees eligible for 401(k)
mrate float 7%9.0g plan match rate, per $
prate float 7%9.0g partic/employ

age byte  %9.0g age of the plan

sole byte  %9.0g =1 if only pension plan
ltotemp float %9.0g log(totemp)

agesq float 7%9.0g age™2

ltotempsq float %9.0g ltotemp~2
Sorted by:
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Describe your data

Check for variation in your data
@ Look at means and standard deviations

@ First check for multicollinearity

sum prate mrate age ltotemp sole

Variable | Obs Mean Std. Dev. Min
_____________ o

prate | 4075 .840607 .1874841 .0036364

mrate | 4075 .463519 .4187388 0

age | 4075 8.186503 9.257011 1

ltotemp | 4075 6.97439 1.539165 4.65396

sole | 4075 .3693252 .4826813 0

71
13.00142
1
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Estimate the linear model with

reg prate mrate age ltotemp sole,

Linear regression

robust

Number of obs
F( 4, 4070)
Prob > F
R-squared
Root MSE

constant effects

4075
202.82
0.0000
0.1755
.17033

age
ltotemp
sole

.1072729
.0037
-.0281719
.0177024
.9505378

Robust

std. Err.

.0060035
.0002493
.0021148
.0059192
.0149728

[95% Conf.

.0955027
.0032113
-.0323181
.0060977
.9211829

Intervall]

.1190432
.0041887
.0240257
.0293072
.9798927
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Introducing non-linearities

What happens to interpretions?

gen mrateage = mrate*age

gen mratelt

otemp = mrate*ltotemp

reg prate mrate age mrateage ltotemp mrateltotemp sole, robust

Linear regres

sion

Number of obs =

F( 6, 4068)
Prob > F
R-squared
Root MSE

age
mrateage
ltotemp
mrateltotemp
sole

Robust

Coef. Std. Err.
-.0014222 .0275289
.0066224 .0004247
-.0054106 .0005122
-.0390588 .0032932
.0240843 .0044453
.0170137 .0058649
1.001494 .0219434

[95% Conf.

-.055394
.0057898
-.0064148
-.0455153
.0153691
.0055153
.9584733

Interval]

.0525496
.007455
-.0044065
-.0326023
.0327995
.0285121
1.044515
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De-meaning to simplify interpretation

gen mrateage0 = mrate* (age - 8.19

gen mrateltotempO = mrate* (ltotemp - 6.974)

reg prate mrate age mrateage(O ltotemp mrateltotempO sole, robust

Linear regression

Number of obs
F( 6, 4068)
Prob > F
R-squared
Root MSE

= 4075
= 156.51
= 0.0000
= 0.1940
= .16845

age
mrateage0
ltotemp
mrateltot~p0
sole

[95% Conf.

Interval]

.1222283
.0066224
-.0054106
-.0390588
.0240843
.0170137
1.001494

.0066737
.0004247
.0005122
.0032932
.0044453
.0058649
.0219434

.1091443
.0057898
-.0064148
-.0455153
.0153691
.0055153
.9584733

.1353124
.007455
-.0044065
-.0326023
.0327995
.0285121
1.044515
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OLS with heteroskedastic s.e.

reg prate mrate age ltotemp sole,

Linear regression

robust

Number of obs
F( 4, 4070)
Prob > F
R-squared
Root MSE

4075
202.82
0.0000
0.1755
.17033

age
ltotemp
sole

.1072729
.0037
-.0281719
.0177024
.9505378

Robust

std. Err.

.0060035
.0002493
.0021148
.0059192
.0149728

[95% Conf.

.0955027
.0032113
-.0323181
.0060977
.9211829

Intervall]

.1190432
.0041887
.0240257
.0293072
.9798927
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OLS with bootstrap s.e.: 100 repetitions

bootstrap, rep(100): reg prate mrate age ltotemp sole
(running regress on estimation sample)

Bootstrap replications (100)

Linear regression Number of obs = 4,075
Replications = 100
Wald chi2(4) = 750.84
Prob > chi2 = 0.0000
R-squared = 0.1755
Adj R-squared = 0.1747
Root MSE = 0.1703
| Observed Bootstrap Normal-based
prate | coefficient std. err. z P>|z| [95% conf. dinterval]
_____________ e e e e e e e e e e e e e e e e e e e e e e e e e e — e — e m e m — e m e — e —mm
mrate | .1072729 .0067057 16.00 0.000 .09413 .1204159
age | .0037 .0002677 13.82 0.000 .0031754 .0042246
ltotemp | -.0281719 .0019182 -14.69 0.000 -.0319315 -.0244123
sole | .0177024 .0059831 2.96 0.003 .0059757 .0294291
_cons | .9505378 .013466 70.59 0.000 .9241449 .9769307
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OLS with bootstrap s.e.: 500 repetitions

bootstrap,

rep(500): reg prate mrate age ltotemp sole

(running regress on estimation sample)

Bootstrap replications (500)

age
ltotemp
sole

Linear regression Number of obs = 4,075
Replications = 500
Wald chi2(4) = 900.30
Prob > chi2 = 0.0000
R-squared = 0.1755
Adj R-squared = 0.1747
Root MSE = 0.1703

| Observed Bootstrap Normal-based
| coefficient std. err. z P>|z]| [95% conf. intervall
S
| .1072729 .0058201 18.43 0.000 .0958656 .1186802
| .0037 .0002511 14.74 0.000 .0032078 .0041921
| -.0281719 .002168 -12.99 0.000 -.032421 -.0239228
| .0177024 .0059192 2.99 0.003 .0061011 .0293037
| .9505378 .0152011 62.53 0.000 .9207442 .9803314

_cons
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OLS with bootstrap s.e.: 1000 repetitions

bootstrap, rep(l000): reg prate mrate age ltotemp sole
(running regress on estimation sample)

Bootstrap replications (1,000)

Linear regression Number of obs = 4,075
Replications = 1,000
Wald chi2(4) = 802.62
Prob > chi2 = 0.0000
R-squared = 0.1755
Adj R-squared = 0.1747
Root MSE = 0.1703
| Observed Bootstrap Normal-based
prate | coefficient std. err. z P>|z]| [95% conf. interval]
_____________ S
mrate | .1072729 .0060208 17.82 0.000 .0954724 .1190735
age | .0037 .0002391 15.47 0.000 .0032313 .0041687
ltotemp | -.0281719 .0021217 -13.28 0.000 -.0323303 -.0240134
sole | .0177024 .0060789 2.91 0.004 .0057879 .0296169
_cons | .9505378 .0150687 63.08 0.000 .9210037 .9800719
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OLS with bootstrap 95% C.l.: 100 repetitions

70

— Bs estimates =' Bs C.l. (95%)

= OLS estimate (95%) =' OLS C.I. (95%)

.08

.09 A 1 A2
Marginal effect of mrate

A3
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OLS with bootstrap 95% C.l.: 500 repetitions

70

— Bs estimates =' Bs C.l. (95%) == OLS estimate (95%) =' OLS C.I. (95%)

.08

.09 A 1 A2 13
Marginal effect of mrate
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OLS with bootstrap 95% C.l.: 1000 repetitions

— Bs estimates =' Bs C.l. (95%) == OLS estimate (95%) =' OLS C.I. (95%)
70

.08 .09 A 1 A2 13
Marginal effect of mrate
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Topics

@ Linear model with cross section data

o Identification and inference using the linear model

o ldentification versus prediction

@ Violation of orthogonality

e |V Estimation of a General Equation

e Two Stage Least Squares
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What is OLS recovering?

Assume E[y|x] = f(x), such that y = f(x) + € where E(¢|x) =0
@ Look at square deviations from y

(y —xb)?> = [f(x)+ e — xb]?
() — b 207(x) bl e + €2
El(y —xb)’] = E{[f(x) —xb]*} + 02

@ Because 3 minimizes E[(y — xb)?], it also solves

min E{[F(x) —xb]%}

(because o2 does not depend on b).
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What is OLS recovering?

x3 is the best mean squared error approximation to the true
conditional mean function u(x) = E(y|x).

60 -

50

40 -

30
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A parallel with prediction (statistical learning)

Focus on polynomial regression:

Ely|x] = Bo + Bix + ﬁzX2 + B3x3 + ...

1100

1000 *- . M
.

Linear Fit .

9001

Quadratic Fit ¢
8001

65 70 75 80 85
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Choosing a model E[Y|x]

Elyx] = f(x)

o Assume f(x) minimizes E[(Y — g(X))?|X] over all functions g at all
points X = x.
@ ¢ =y — f(x) is the irreducible error

e Even if we knew f(x), we would still make errors in prediction, since at
each X = x there is typically a distribution of possible Y values.

e Bias-variance trade-off: for any estimate (x) of f(x):

E[(Y — F(X))?|X = x] = [f(x) — F(x)]> + Var(e)

bias (reducible) variance (irreducible)
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Choosing a model Y = f(x)

Error

A

Total Error

Variance

Optimal Model Complexity

Model Complexity
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Global versus local fitting

Balance the bias-variance trade-off:
e 7 flexibility of our model = overfit the data and 1 the variance.

@ | flexibility of our model = poorly fit the data and 1 our bias.
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Global versus local fitting

Balance the bias-variance trade-off:
e 7 flexibility of our model = overfit the data and 1 the variance.

@ | flexibility of our model = poorly fit the data and 1 our bias.
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Global versus local fitting

Balance the bias-variance trade-off:
e 7 flexibility of our model = overfit the data and 1 the variance.

@ | flexibility of our model = poorly fit the data and 1 our bias.
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Polynomial vs spline regression

e Limitation of polynomial regression: non-locality

o Fitted regression at any arbitrary point x depends on the data across
the entire range

e Changes to observed values near the boundary (e.g., min or max of x)
can lead to changes in the fitted function far from that value.

@ Spline regression: partition x into smaller intervals based on an
arbitrary points and fit localized polynomials.
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Spline regression

e Knots (k)
e Points where the different piecewise polynomials are joined.
e Divide the line into (k + 1) parts.

e Degrees (d): degree of the polynomial in each part.
@ Spline: OLS with polynomial expression for each segment
o Example: k=2,d=2
y = Bo+ Bix + Box® + Baf (x, k1) + Baf (x, ko) + €
where for example

f(x, k) = max(0,x — k;)?

e (1 captures the overall linear trend.
e (> captures the overall quadratic trend.
o f33 (B4) captures additional curvature after ky (kz).
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Spline regression: quadratic spline
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Polynomial regression versus spline

Data points
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Polynomial regression versus spline

Linear
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Polynomial regression versus spline

Higher degree polynomials

= QOrder2 = = Order3 Order 4
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Polynomial regression versus spline

Spline
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Topics

@ Linear model with cross section data

o Identification and inference using the linear model

e Identification versus prediction

@ Violation of orthogonality

e IV Estimation of a General Equation

e Two Stage Least Squares
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APPLICATION: Effect of institutions on economic
performance (Acemoglu et al. AER 2001)

Interested in studying the causal effect of institutions on GDP:

GDP; = By + By Institutions; + Xy + €;

@ Institutions are the humanly devised constraints that structure
political, economic and social interaction (North JEP 1991)

e informal constraints: sanctions, taboos and codes of conduct,
customs and traditions

e formal rules: constitutions and laws, property rights
@ Countries with better institutions will

e invest more in physical and human capital + more efficient use

e Correlation or causality?
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GDP per capita and current institutions

Log GDP per capita, PPP, 1995
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GDP per capita and current institutions

TABLE 2—OLS REGRESSIONS

Whole Base Whole Whole Base Base Whole Base
world  sample  world  world  sample  sample  world  sample
[©) @) 3) @ (O] © (@] @
Dependent variable
is log output per
Dependent variable is log GDP per capita in 1995 worker in 1988
Average protection 0.54 052 047 043 047 0.41 045 046
against expropriation 0.04)  (006)  (0.06) 005)  (0.06) (0.06) (0.04) (0.06)
risk, 1985-1995
Latitude 089 0.37 1.60 0.92
(049) 051)  (0.790) (0.63)
Asia dummy ~0.62 —0.60
(0.19) (0.23)
Africa dummy —1.00 —0.90
(0.15) 0.17)
“Other” continent dummy -025 —0.04
(0.20) (0.32)
R* 0.62 054 063 0.73 0.56 0.69 0.55 049
Number of observations 110 64 110 110 64 64 108 61

Notes: Dependent variable: columns (1)~(6), log GDP per capita (PPP basis) in 1995, current prices (from the World Bank's
World Development Indicators 1999); columns (7)—(8), log output per worker in 1988 from Hall and Jones (1999). Average
protection against expropriation risk is measured on a scale from 0 to 10, where a higher score means more protection against
expropriation, averaged over 1985 to 1995, from Political Risk Services. Standard crrors arc in parentheses. In regressions
with continent dummies, the dummy for America is omitted. See Appendix Table Al for more detailed variable definitions
and sources. Of the countries in our base sample, Hall and Jones do not report output per worker in the Bahamas, Ethiopia,
and Vietnam.
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GDP per capita and current institutions

TABLE 2—OLS REGRESSIONS

Whole ~ Base ~ Whole ~ Whole Base Base Whole  Base
world  sample  world  world  sample  sample  world  sample
@ [¢)] 3) “@ ) ©) U] @®)

Dependent variable
is log output per

Dependent variable is log GDP per capita in 1995 worker in 1988
Average protection 0.54 052 047 043 0.47 041 045 046
against expropriation 0.04)  (006)  (0.06) 005)  (0.06) (0.06) (0.04) (0.06)
risk, 1985-1995
Latitude 0.89 0.37 1.60 0.92
(049) 051)  (0.790) (0.63)
Asia dummy —0.62 —0.60
(0.19) (0.23)
Africa dummy —1.00 —0.90
(0.15) 0.17)
“Other” continent dummy -025 —0.04
(0.20) (0.32)
R* 0.62 054 063 0.73 0.56 0.69 0.55 049
Number of observations 110 64 110 110 64 64 108 61

Notes: Dependent variable: columns (1)~(6), log GDP per capita (PPP basis) in 1995, current prices (from the World Bank's
World Development Indicators 1999); columns (7)—(8), log output per worker in 1988 from Hall and Jones (1999). Average
protection against expropriation risk is measured on a scale from 0 to 10, where a higher score means more protection against
expropriation, averaged over 1985 to 1995, from Political Risk Services. Standard crrors arc in parentheses. In regressions
with continent dummies, the dummy for America is omitted. See Appendix Table Al for more detailed variable definitions
and sources. Of the countries in our base sample, Hall and Jones do not report output per worker in the Bahamas, Ethiopia,
and Vietnam.

@ OLS estimates could be biased upwards
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GDP per capita and current institutions

TABLE 2—OLS REGRESSIONS

Whole ~ Base ~ Whole ~ Whole Base Base Whole  Base
world  sample  world  world  sample  sample  world  sample
@ [¢)] 3) “@ ) ©) U] @®)

Dependent variable
is log output per

Dependent variable is log GDP per capita in 1995 worker in 1988
Average protection 0.54 052 047 043 0.47 041 045 046
against expropriation 0.04)  (006)  (0.06) 005)  (0.06) (0.06) (0.04) (0.06)
risk, 1985-1995
Latitude 0.89 0.37 1.60 0.92
(049) 051)  (0.790) (0.63)
Asia dummy ~0.62 ~0.60
(0.19) (0.23)
Africa dummy —1.00 -0.90
(0.15) 0.17)
“Other” continent dummy -025 —0.04
(0.20) (0.32)
R* 0.62 054 063 0.73 0.56 0.69 0.55 049
Number of observations 110 64 110 110 64 64 108 61

Notes: Dependent variable: columns (1)~(6), log GDP per capita (PPP basis) in 1995, current prices (from the World Bank's
World Development Indicators 1999); columns (7)—(8), log output per worker in 1988 from Hall and Jones (1999). Average
protection against expropriation risk is measured on a scale from 0 to 10, where a higher score means more protection against
expropriation, averaged over 1985 to 1995, from Political Risk Services. Standard crrors arc in parentheses. In regressions
with continent dummies, the dummy for America is omitted. See Appendix Table Al for more detailed variable definitions
and sources. Of the countries in our base sample, Hall and Jones do not report output per worker in the Bahamas, Ethiopia,
and Vietnam.

@ OLS estimates could be biased upwards

@ rich countries can afford or prefer better institutions (reverse causality)
@ unobserved determinants of both variables (omitted variable bias)
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IV: identification when orthogonality fails

@ No such thing as an OLS or IV “model”

@ OLS and IV are different estimation methods that can be applied to
the same model

@ Population model is the standard linear model

y=xB+u

e xislxKandfBis Kx1

e Instrumental variable: z = (z1, 2, ...,z;) be 1 x L (call it the )

e Suppose for the moment that L = K
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Identification and exclusion restriction (IV.1)

@ Follow the usual steps for identification in linear models

y = xB+u
/

Zy = ZxB+7Zu
E(Zy) = E(ZX)B+E(Zu)

Exclusion restriction or instrument exogeneity

E(Zu)=0

e Same approach of orthogonality in OLS

o Used to cancel out the error term using expected values
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Interpretation of exclusion restriction

@ z contains all exogenous elements of x

o Example: xx is possibly endogenous and z; as an |V for xk, then

x = (1,x2,.,XK-1,XK)

z = (17X27"'7XK—1aZI)

e xy is excluded from z

o If one or more elements of x is correlated with u, z must contain some
outside variables

@ The number of these outside variables (instruments) is at least equal to
the number of endogenous variables
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Rank condition (1V.2)

@ Using the exclusion restriction we can write:

EZy) = E(Z%)B
B = [E@E@x)]E(EY) (7)

e [ is identified if we assume a rank condition for E(z'x)

Rank condition or instrument relevance

rank E(z'x) = K

@ Note that IV.1 and IV.2 extends the conditions for OLS
o OLS is just a special IV case where z = x
e All results on consistency and inference follows
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Testing for the rank condition
Assume we have a single endogenous explanatory variable, xx
@ Write the reduced form of xx as

Xk =01+ 02x0 + ... + Ok _1xk_1 + 0121 + rk

e This is often called the first-stage regression

e By definition, we require orthogonality to be valid

66



Testing for the rank condition
Assume we have a single endogenous explanatory variable, xx
@ Write the reduced form of xx as

Xk =01+ 02x0 + ... + Ok _1xk_1 + 0121 + rk

e This is often called the first-stage regression

e By definition, we require orthogonality to be valid

@ Rank condition holds if and only if

61 #£ 0

o Rule of thumb: F statistic > 10
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APPLICATION: Effect of institutions on
economic performance — |V strategy

GDP; = By + Bilnstitutions; + Xy + €;

@ |V for Institutions;: mortality rates faced by the settlers during
colonization as an instrument

e Valid if mortality rates have no effect on income today other than
through their influence on institutional development.

(potential) settler = settlements

mortality
early current
> institutions institutions
current
=>

performance.
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Income and settler mortality (reduced-form)

10
w
(2]
()]
=
[N
o 8
a
]
‘a
(W]
[&]
L
(V7]
o
o
& 6
o
(o]
o]
)
4

ETH

GIN % -

PAKIND

BGD Z
MLI

4 6
Log of Settler Mortality

68



The effect of institutions on GDP per capita

TABLE 4— IV REGRESSIONS OF LoG GDP PER CAPITA

Base
Base Base sample,
Base Base sample sample dependent
Base sample Base sample sample sample with with variable is
Base Base without without without without continent continent log output
sample sample Neo-Europes Neo-Europes Africa Africa dummies dummies per worker
(1 2) [©)] [©] [©)] (6) [} (&) ©)
verage protection against 0.94 1.00 1.28 121 0.58 0.58 098 1.10 098
expropriation risk 1985-1995  (0.16)  (0.22) (0.36) (0.35) (0.10)  (0.12) (0.30) (0.46) (0.17)
Latitude —0.65 054 0.04 —120
(1.34) (1.46) (0.84) (1.8)
Asia dummy —092 =1.10
(0.40) (0.52)
Africa dummy —0.46 —0.44
(0.36) (0.42)
“Other” continent dummy —-0.94 -0.99
(0.85) (1.0

@ |V estimate is precisely estimated and large

e Compare with OLS to understand bias (0.54 for base sample)
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Topics

@ Linear model with cross section data

o Identification and inference using the linear model

o Identification versus prediction

@ Violation of orthogonality

e |V Estimation of a General Equation

e Two Stage Least Squares
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Can we use multiple instruments?

In some cases, we have more instruments than we need

@ Example: if we can use mother’s education as an IV, why not father's
education?

Identification versus overidentification:
@ When L > K = model is potentially overidentified
@ When L = K = model is just identified

When L > K, we can apply a flexible IV estimator, called Two Stage
Least Squares (2SLS)
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Two Stage Least Squares (2SLS)

y = xB+u
E(Zu) = 0
L=dim(z) > dim(x)=K

@ The best vector of instruments is the vector of linear projections of
each element of x on z

x =z - + r
1xK IxL LxK 1xK

E(Zr)=0

@ Intuition behind 2SLS: if you have more than one instrument per
endogenous variable, you can always recreate a single instrument using
linear combinations of multiple instruments!
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2SLS in practice: procedure

© First stage
o Run the regression X on Z to obtain 1 = (2'2)~1Z'X.

e Notice that exogenous variables act as their own instrument

e Obtain the vector fitted values

A

X = zh
(Z2)7'7'x

@ Second stage: run the regression of y on fitted values &

-1

N
Bosis = <NIZSR§5Z,-> < 1252},’) — (R'R)IRY
i=1
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Intepretation of 2SLS assumptions

e IV.1 — Exogenous Instruments

E(fu)=E(Zu) =0

e IV.2 — Rank Condition:

a) rank E(z'z) = L: rules out perfect collinearity among the exogenous
variables (first stage)

b) rank E(8R) = K: it corresponds to rank E(z'x) = K (second stage)

c) L> K: | need at least one instrument for each endogenous variable
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APPLICATION: Returns to schooling

Estimating the return to schooling via simple regression:

log(wage;) = Bo + Preduc; + u;

@ OLS estimate biased: educ; is clearly endogenous (orthogonality)
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APPLICATION: Returns to schooling

Estimating the return to schooling via simple regression:

log(wage;) = Bo + Preduc; + u;

@ OLS estimate biased: educ; is clearly endogenous (orthogonality)

@ Suggestions for z - are they valid as IV?
e mother's education
e number of siblings
e distance to the nearest college at age 16

e z is a randomly assigned education grant during high school
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APPLICATION: Returns to schooling

Angrist and Krueger (QJE 1991) propose z binary, z =1 if born in first
quarter of year

@ Individuals born in the beginning of the year start school at older age

@ — can drop out after completing less years of schooling than
individuals born near the end of the year

@ What do | need for the validity of this instrument?

© Relevance: the quarter of birth is correlated with years of education -
true?

@ Exclusion restriction: Quarter of birth is not correlated with
unobserved determinants of wage - true?
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APPLICATION: Returns to schooling

Years of Completed Education

13.2

13.0

i2.8

2.6

12.4

4
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30 32 34 36 38 40

Year of Birth
FIGURE I
Years of Education and Season of Birth
1980 Census
Note. Quarter of birth is listed below each observation.
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APPLICATION: Returns to schooling

If identification strategy for IV is valid, compare OLS and 2SLS estimates
to understand bias in OLS estimates

TABLE IV
OLS anp TSLS EsTiMATES OF THE RETURN TO EpucATION FOR MEN BORN 1920-1929: 1970 Census®
(1) (2) @) 4) (5) (6) (7 (8)
Independent variable OLS TSLS OLS TSLS OLS TSLS OLS TSLS
Years of education 0.0802 0.0769 0.0802 0.1310 0.0701 0.0669 0.0701 0.1007
(0.0004) (0.0150) (0.0004) (0.0334) (0.0004) (0.0151) (0.0004) (0.0334)
Race (1 = black) —_ — _ —_ 0.2980 —0.3055 —0.2980 —0.2271
(0.0043) (0.0353) (0.0043) (0.0776)
SMSA (1 = center city) — - — —_ 0.1343 0.1362 0.1343 0.1163
(0.0026) (0.0092) (0.0026) (0.0198)
Married (1 = married) —_ — — — 0.2928 0.2941 0.2928 0.2804
(0.0037) (0.0072) (0.0037) (0.0141)
9 Year-of-birth dummies Yes Yes Yes Yes Yes Yes Yes Yes
8 Region of residence dummies No No No No Yes Yes Yes Yes
Age — ~ 0.1446 0.1409 — —_ 0.1162 0.1170
(0.0676) (0.0704) (0.0652) (0.0662)
Age-squared — — —-0.0015 —-0.0014 — — —0.0013 -0.0012
(0.0007) (0.0008) (0.0007) (0.0007)
x° [dof] — 36.0[29] — 25.6 [27) - 34.2 [29] — 28.8 [27]

a. Standard errors are in parentheses. Sample size is 247,199, Instruments are a full set of quarter-of-birth times year-of-birth interactions. The sample consists of males born in the
United States. The sample is drawn from the State, County, and Neighborhoods 1 percent samples of the 1970 Census (15 percent form). The dependent variable is the log of weekly
i

earnings. Age and age-squared are measured in g

of years. Each equation al

n intercept.



Weak instrument

You find an instrumental variable, z, presenting these two properties:

@ Exclusion restriction is valid

Cov(z,e) =0

@ Relevance is valid
Cov(z,x) #0

but covariance is small (z is a weak instrument)
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Intuition behind weak instruments

Identification of 81 in a simple case: y = 8o + f1x + ¢

@ Apply the covariance operator

Cov(z,y) = P1Cov(z,x) + Cov(z,e)

@ Identify 31 using exogeneity assumption

B Cov(z,y)
~ Cov(z,x)

b1

@ (31 is identified!
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IV and OLS comparison: weak instruments

We can derive the estimators for OLS and IV:

. oa oe Corr(z,e
plim Ay = iy + 25 EM2I
ox Corr(z,x)

. A g
plim 51,015 = B1 + Ui - Corr(x,€)

X

o If z is a weak instrument, IV can produce a larger asymptotic bias
than OLS

o Common to see IV estimates larger in magnitude than OLS estimates

e Weak instruments lead to large asymptotic standard errors
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PROOF: IV and OLS comparison

@ Replacing the population covariances with the sample covariances

NN (2= 2)(yi — 7)

NN (2 — 2)(d; — d)
NIV (2 — 2)e

NN (2 — 2)(di — d)

Briv =

P+

@ Compare with OLS estimator

N7 Y (di — d)ei
N-TY X (d; — d)?

Bros = P+

@ Then use the rule Cov(d,€) = Corr(d, €)oo,
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APPLICATION: Angrist and Evans (AER, 1998)

Children and Their Parents’ Labor Supply: Evidence from
Exogenous Variation in Family Size

By JosHUA D. ANGRIST AND WILLIAM N. EVANS *

Research on the labor-supply consequences of childbearing is complicated by
the endogeneity of fertility. This study uses parental preferences for a mixed
sibling-sex composition to construct instrumental variables (1V ) estimates of the
effect of childbearing on labor supply. IV estimates for women are significant but
smaller than ordinary least-squares estimates. The IV are also smaller for more
educated women and show no impact of family size on husbands’ labor supply.
A comparison of estimates using sibling-sex composition and twins instruments
implies that the impact of a third child disappears when the child reaches age
13. (JEL 313, J22)
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Data

Data are a subset from Angrist and Evans (AER, 1998), LABSUP.DTA.

. use labsup.dta

. * Women are black or Hispanic (possibly both).

. des hours nonmomi kids educ age black hispan samesex

storage display
variable name type format variable label
hours byte  %8.0g hours of work per week, mom
nonmomi float %9.0g ’non-mom’ income, $1000s
kids byte  %8.0g number of kids
educ byte  %8.0g mom’s years of education
age byte  %8.0g age of mom
black byte  %8.0g =1 of black
hispan byte  %8.0g =1 if hispanic
samesex byte  %8.0g first two kids are of same sex
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Summarize variables

. sum hours nonmomi kids educ age black hispan

Variable | Obs Mean Std. Dev. Min Max
_____________ +____ - - - - - ———
hours | 31857 21.22011 19.49892 0 99
nonmomi | 31857 31.7618 20.41241 -39.93675 157.438
kids | 31857 2.752237 .9771916 2 12
educ | 31857 11.00534 3.305196 0 20
age | 31857 29.74175 3.613745 21 35
_____________ +____ - - - - - —_———
black | 31857 .4129705 .4923753 0 1
hispan | 31857 .593182 .4912481 0 1
count if hours ==
13068
count if hours == 40

11245
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Tabulate number of kids

. tab kids

number of
kids

© 00 N O O W N

10
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Gender of the first two kids

. tab samesex

first two |
kids are of |
same sex | Freq. Percent Cum.
0 | 15,840 49.72 49.72
1 16,017 50.28 100.00
Total | 31,857 100.00

@ Not a surprise the distribution is around 50/50

e Indicative of randomness

o Not valid for all countries (i.e. sex-selective abortion)
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OLS estimates

. reg hours kids nonmomi educ age agesq black hispan, robust

Linear regression Number of obs = 31857
F( 7, 31849) = 377.87
Prob > F = 0.0000
R-squared = 0.0727
Root MSE = 18.779

| Robust
hours | Coef. Std. Err. t P>|t| [95% Conf. Interval]
kids | -2.325836 .1155164 -20.13 0.000 -2.552253 -2.099419
nonmomi | -.0578328  .0053515 -10.81  0.000 -.068322  -.0473436
educ | .5860083  .0374881 156.63  0.000 .5125302 .6594865
age | 2.048793 .4483823 4.57 0.000 1.169946 2.927639
agesq | -.0277198 .0076957 -3.60 0.000 -.0428036 -.012636
black | 1.058285 1.35088 0.78 0.433 -1.589492 3.706063
hispan | -5.114147 1.35152 -3.78  0.000 -7.763179  -2.465116
_cons | -10.44695 6.588891 -1.69 0.113 -23.36143 2.467528

@ Each child beyond the first two reduces estimated hours by about 2.3
hours, other things fixed



Endogeneity: samesex as instrument

. reg kids samesex nonmomi educ age agesq black hispan, robust

Linear regression Number of obs = 31857
F( 7, 31849) = 437.80
Prob > F = 0.0000
R-squared = 0.1191
Root MSE = .91724

| Robust
kids | Coef. Std. Err. t P>t [95% Conf. Intervall
samesex | .0703744  .0102783 6.85 0.000 .0502285 .0905202
nonmomi | -.0027871 .000257  -10.85  0.000 -.0032907  -.0022834
educ | -.0853676 .0020296  -42.06  0.000 -.0893457 -.0813895
age | .0589312 .0203278 2.90 0.004 .019088 .0987744
agesq | 1.98e-06 .0003559 0.01 0.996 -.0006956 .0006995
black | .0128681 .0644422 0.20 0.842 -.113441 .1391772
hispan | -.0424722 .0644997 -0.66  0.510 -.1688941 .0839498
_cons | 2.010258 .2930274 6.86 0.000 1.435913 2.584603
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IV estimates

@ Much bigger effect using IV, but only marginally statistically significant

. ivreg hours nonmomi educ age agesq black hispan (kids

= samesex), robust

Instrumental variables (2SLS) regression Number of obs = 31857
F( 7, 31849) = 304.81
Prob > F = 0.0000
R-squared = 0.0583
Root MSE = 18.924
| Robust
hours | Coef. Std. Err. t P>t [95% Conf. Intervall
kids | -4.878903  3.013547 -1.62 0.105 -10.78557 1.027766
nonmomi | -.0649179 .0099359 -6.53  0.000 -.0843926  -.0454432
educ | .368042 2595992 1.42  0.156 -.1407823 .8768664
age | 2.200964 .4845126 4.54 0.000 1.2513 3.150627
agesq | -.0277443 .007744 -3.58 0.000 -.042923  -.0125657
black | 1.094986  1.376742 0.80 0.426 -1.603482 3.793454
hispan | -5.2177568 1.381364 -3.78 0.000 -7.925284  -2.510232
_cons | -5.253976  9.037541 -0.58 0.561 -22.9679 12.45995
Instrumented: kids
Instruments: nonmomi educ age agesq black hispan samesex
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Weak instrument

@ The partial correlation is even small

. corr kids samesex
(obs=31857)

1.0000
0.0358  1.0000

@ It's not surprising the IV estimate is much less precise than OLS

@ A much larger sample size, as in Angrist and Evans, and another
instrument — indicating a multiple second birth — help a lot with
precision
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Testing for endogeneity of x

Consider the standard linear model with IV
y = xB+u

E(Zu) = 0
@ How to test whether x is endogenous?
Ho: E(Xu)=0

@ | can test for endogeneity only if | have an instrument!

© Durbin-Wu-Hausman (DWH) test

© Regression-based Hausman test
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Testing for endogeneity of x

@ Durbin-Wu-Hausman (DWH) test

o Takes the null Basis — Bors 2 0 and provide limiting distribution
o If all elements of x are exogenous then 2SLS and OLS should differ
only due to sampling error.

@ Regression-based Hausman test
@ Regress each endogenous variable in x; on z; to obtain a vector of
residuals ¢;
® Run the regression y; on x;,9; (control function approach)
© Test the coefficients in front of 0; are different from zero (if confirmed
then x presents endogeneity)
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Testing overidentifying restrictions

If more instruments than the number we need, we can test whether some
of them are exogenous.

@ From 2SLS: K exact moment conditions hold in the sample
N
NDY & =0
i=1

o Test for overidentifying restrictions checks whether these
conditions hold in the data

@ Rejection indicates that one or more |Vs fail the exogeneity
requirement

e We do not know which one though.
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Labor supply application: OLS estimates

reg hours kids nonmomi educ age agesq black hispan, robust

Linear regression Number of obs = 31857
F( 7, 31849) = 377.87
Prob > F = 0.0000
R-squared = 0.0727
Root MSE = 18.779

| Robust
hours | Coef. std. Err. t P>t| [95% Conf. Interval]
_____________ e
kids | -2.325836 .1155164 -20.13 0.000 -2.552253 -2.099419
nonmomi | -.0578328 .0053515 -10.81 0.000 -.068322 -.0473436
educ | .5860083 .0374881 15.63 0.000 .5125302 .6594865
age | 2.048793 .4483823 4.57 0.000 1.169946 2.927639
agesq | -.0277198 .0076957 -3.60 0.000 -.0428036 -.012636
black | 1.058285 1.35088 0.78 0.433 -1.589492 3.706063
hispan | -5.114147 1.35152 -3.78 0.000 -7.763179 -2.465116
~cons | -10.44695 6.588891 -1.59 0.113 -23.36143 2.467528



Labor supply application: 2SLS estimates

. ivreg hours nonmomi educ age agesq black hispan (kids

= samesex), robust

Instrumental variables (2SLS) regression Number of obs = 31857
F( 7, 31849) = 304.81
Prob > F = 0.0000
R-squared = 0.0583
Root MSE = 18.924
| Robust
hours | Coef.  Std. Err. t P>t| [95% Conf. Intervall
kids | -4.878903  3.013547 -1.62 0.105 -10.78557 1.027766
nonmomi | -.0649179 .0099359 -6.53  0.000 -.0843926  -.0454432
educ | .368042 .2595992 1.42  0.156 -.1407823 . 8768664
age | 2.200964 .4845126 4.54 0.000 1.2513 3.150627
agesq | -.0277443 .007744 -3.568 0.000 -.042923 -.0125657
black | 1.094986  1.376742 0.80 0.426 -1.603482 3.793454
hispan | -5.217758  1.381364 -3.78 0.000 -7.925284  -2.510232
_cons | -5.2563976  9.037541 -0.58 0.561 -22.9679 12.45995
Instrumented: kids
Instruments: nonmomi educ age agesq black hispan samesex
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Use two instruments in 2SLS

Use samesex and multi2nd (1 if second are twins) as 1Vs for kids.

@ Estimate the reduced form

reg kids samesex multi2nd nonmomi educ age agesq black hispan, robust

Linear regression Number of obs = 31857
F( 8, 31848) = 410.77
Prob > F = 0.0000
R-squared = 0.1244
Root MSE = .91452

| Robust
kids | Coef. Std. Err. t P>t [95% Conf. Interval]
_____________ S
samesex | .07044 .0102481 6.87 0.000 .0503533 .0905267
multi2nd | .7632484 .0546856 13.96 0.000 .6560626 .8704342
nonmomi | -.0027879 .0002562 -10.88 0.000 -.0032901 -.0022858
educ | -.0853114 .0020267 -42.09 0.000 -.0892838 -.0813391
age | .0563395 .020282 2.78 0.005 .016586 .0960929
agesq | .0000436 .0003551 0.12 0.902 -.0006524 .0007396
black | .0105681 .0645589 0.16 0.870 -.1159698 .1371059
hispan | =-.0420447 .0646128 -0.65 0.515 -.1686882 .0845988
_cons | 2.043467 .2924263 6.99 0.000 1.4703 2.616634



Test relevance of instruments

. test samesex multi2nd

(1) samesex = 0
(2) multi2nd = 0

117.38
0.0000

F( 2, 31848)
Prob > F

@ The two IV candidates are partially correlated with kids, both in the
direction (positive) that we expect.

o Get the reduced form residuals: predict v2h, resid
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Hausman regression-based test

Run regression of y on endogenous variables and fitted residuals (v2h)

reg hours kids nonmomi educ age agesq black hispan v2h, robust

Linear regression Number of obs = 31857
F( 8, 31848) = 330.79
Prob > F = 0.0000
R-squared = 0.0727
Root MSE = 18.779
| Robust
hours | Coef. std. Err. t P>t [95% Conf. Interval]
,,,,,,,,,,,,, o
kids | -2.986165 1.284302 -2.33 0.020 -5.503447 -.4688828
nonmomi | -.0596653 .0064263 -9.28 0.000 -.072261 -.0470696
educ | .5296332 .1154311 4.59 0.000 .3033839 .7558825
age | 2.08815 .4545537 4.59 0.000 1.197208 2.979093
agesq | -.0277261 .0076958 -3.60 0.000 -.0428101 -.0126422
black | 1.067778 1.350595 0.79 0.429 -1.57944 3.714995
hispan | -5.140945 1.352129 -3.80 0.000 -7.791169 -2.490721
v2h | .665256 1.290263 0.52 0.606 -1.86371 3.194222
~cons | -9.103833 7.093029 -1.28 0.199 -23.00644 4.798776

@ Test statistic for v2h is about .52: little evidence of endogeity of kids.
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Careful with s.e. = 2SLS estimates
Compute the 2SLS estimates to have correct s.e.

ivreg hours nonmomi educ age agesqg black hispan (kids = samesex multi2nd),

robust
Instrumental variables (2SLS) regression Number of obs = 31857
F( 7, 31849) = 310.81
Prob > F = 0.0000
R-squared = 0.0717
Root MSE = 18.789
| Robust
hours | Coef. Std. Err. t P>t [95% Conf. Interval]
_____________ o e
kids | -2.986165 1.28219 -2.33 0.020 -5.499307 -.473022
nonmomi | -.0596653 .0064235 -9.29 0.000 -.0722555 -.0470751
educ | .5296332 .1152961 4.59 0.000 .3036484 .755618
age | 2.08815 .4545798 4.59 0.000 1.197156 2.979144
agesq | -.0277261 .0076979 -3.60 0.000 -.0428143 -.012638
black | 1.067778 1.355563 0.79 0.431 -1.589178 3.724733
hispan | -5.140945 1.357096 -3.79 0.000 -7.800906 -2.480985
~cons | -9.103834 7.092956 -1.28 0.199 -23.0063 4.798632
Instrumented: kids
Instruments: nonmomi educ age agesq black hispan samesex multi2nd
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Careful with s.e. = 2SLS estimates

@ OLS makes use of the following:
N -1 N
VN(Bos — B) = (’V_l ij-x,-) <N_1/2 ZX§Ui>
i=1 i=1

@ 2SLS makes use of the following:

N -1 N
VN(Basis — B) = (N_l Z%ﬁ) (N_1/2 Z%‘U;)
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