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Course structure and evaluation

Microeconometrics aims at

1 giving empirical content to economic relations

2 using micro-level data

3 with a particular focus on causal inference
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Course structure and evaluation

Grading of the course is divided in three components:

1 Problem Sets (three): 15%

Tests what learned in class with practical examples

2 Group assignment: 30%

Paper replication project

3 Final exam: 55%

Covers all the material covered in the course
Minumum passing grade of 8/20.
In accordance with the school norms, there is no procedure for grade
improvement after passing a course (no re-sit or second course
enrolment)
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Material

The course is based on the slides, but we will follow partial material of the
following textbook:

Wooldridge, J., Econometric Analysis of Cross-Section and Panel
Data. MIT Press, Cambridge, MA.

Additional material can be found here:

Angrist, J.D., and J.S. Pischke, Mostly harmless econometrics: An
empiricist’s companion. Princeton University Press.

[MORE ADVANCED - PhD level] Cameron, A. C., and P. K. Trivedi,
Microeconometrics: Methods and Applications. Cambridge
University Press, New York, NY.
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No requirement of a specific software

The course will present a practical part using:

STATA

You are free to use other software programs to practice or for the problem
sets:

R

Matlab
Etc...
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Topics covered

1 General microeconometrics approach

2 Identification in linear models: from cross-section to panel data

3 Non-linear models and the maximum likelihood

4 Latent variable models

5 Censored data

6 Sample selection

7 GMM

8 Statistical learning tools for causal analysis
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Summary of today’s class

1 Main concepts in microeconometrics

2 General microeconometrics approach

3 The identication problem

Parametric versus non-parametric solutions

4 Introduction to non-parametric methods
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A problem: returns to education
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Causation versus correlation

Interested in the causal effect between two random variables

Variable of interest: D

Outcome variable: Y

Directed Acyclic Graphs (or DAGs): powerful instrument to understand
causation versus correlation

Direction of the arrow represents the causal effect

Can we recover this relationship?
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Some definitions: confounder

Two paths from D to Y

1 Causal effect: direct path D → Y

2 Backdoor path: D ← X → Y

Spurious correlation between D and Y driven by X

X is a confounder
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Some definitions: observability

Two paths from D to Y

1 Causal effect: direct path D → Y

2 Backdoor path: D ← U → Y

U unobserved to the researcher (dashed lines)

U is a unobserved confounder (or non-collider) ⇒ backdoor path is
open
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Some definitions: collider

Two paths from D to Y

1 Direct path: D → Y

2 Backdoor path: D → X ← Y

Two variables cause a third variable along some path

X is a collider ⇒ backdoor path is closed
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Solving for causation

Open backdoor paths ⇒

Systematic non-causal correlations between the variables of interest

How to solve this problem?

Backdoor criterion: when all backdoor paths are closed, the focus is
on causal relationships

1 Backdoor path is open: control for the variable ⇒ importance of
observability

2 Backdoor path is closed: ignore the variable ⇒ controlling would
open the path (bad control)
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An example

What is the causal effect of education (D) on earnings (Y )?

PE: parental education

I: family income

B: background factors (e.g., family environment, mental ability, ...)
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An example

Four paths between D and Y :

1 Causal effect: D → Y

2 Backdoor path 1: D ← I → Y

3 Backdoor path 2: D ← PE → I → Y

4 Backdoor path 3: D ← B → PE → I → Y

How can we isolate the causal effect?
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An example

Identify the open backdoor to close ⇒ all through I

In a linear model, run the following regression controlling for the open
backdoor

Yi = α+ βDi + γIi + ϵi

β can be interpreted as causal
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An example

What if you run the same regression?

Yi = α+ βDi + γIi + ϵi

One backdoor remains open (causing D to be correlated with ϵ)

β can be interpreted as (spurious) correlation ⇒ it captures the
causal effect + the backdoor effect through B
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Studying causal relationships: population and
random sampling

The notion of a population is very important
1 Large set of objects of a similar nature - e.g. human beings,

households, readings from a measurement device
2 Of interest as a whole
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Studying causal relationships: population and
random sampling

Our data are obtained as a random sample from a specified
population of interest

A subset of objects is drawn from a population

Each draw is independent and identically distributed (i.i.d.)

Later on we will focus on violations of random sampling

Censoring

Missing data

Sample selection problems
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Studying causal relationships: type of data

We will begin by assuming cross-sectional data

We will extend the material to panel (or longitudinal) data or mixed
cases (repeated cross sections)
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What do we care about outcomes?

Density function f (y) (pdf) and cumulative distribution function
F (Y ) (cdf)

Conditional density function f (y |x)
Moments of these distributions (unconditional and conditional means
and variance)
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General microeconometrics approach

Start with a model for a conditional density in the population of interest

f (y |x;β)

x: vector of (observable) control variables
β: vector of parameters to be estimated

1 Discuss whether β can be identified and what assumptions are needed

2 Assume we have access to a random sample of size N

{(xi , yi ) : i = 1, ...,N}

3 Use a random sample to estimate the population parameter
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When this approach is feasible?

A statistical model is identifiable if...
...it is theoretically possible to learn the true values underlying parameters
with an infinite number of observations from it.

Types of identification

1 Point identification: underlying parameters are unique values

2 Set identification: underlying parameters are sets of values

3 Not identified: more than one set of parameters generate the same
distribution of observations (observationally equivalent)
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Identification: some examples

With random sampling, identification is purely a population problem

If the model is well specified ⇒ it will have similar characteristics to
the population when the sample gets larger

Imagine the following population models:

1 y = xβ

2 y = xβ + u

3 y = xβ
λ + u

Can we identify the parameters β and λ in these cases? What
assumptions we need for x and u?
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Identification: intuition

Identification Precision (inference)
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The identification problem in the general
microeconometrics approach

Studying f (y |x;β) includes two types of unknowns:

1 What is the function f ()?

2 What are the parameters β?

Identification problem: in general we cannot identify both

1 Parametric micro-econometrics

Estimate β at the cost of making some assumptions and recovering
only some features of f ()

2 Non-parametric micro-econometrics

Recover some features of f () (i.e., an infinite dimensional feature)

Generally used to look at distributions of a single variable or a
relationship between two variables
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Example: conditional mean of y

We want to estimate E [y |x] using exogenous covariates x

1 Parametric: E [y |x] = α+ xβ

2 Non-parametric: E [y |x] = H(x)

3 Semi-parametric: E [y |x] = G (α+ xβ)
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Non-parametric methods

1 Cumulative distribution functions (CDF)

2 Density (PDF)

3 Conditional means

28



Empirical CDF

Let y denote a random variable with cdf F (a) = P(y ≤ a)

P(y ≤ a) = E{1[y ≤ a]}

Empirical CDF is the empirical counterpart

F̂ (a) = N−1
N∑
i=1

1[yi ≤ a]

Simply the fraction of observations that are ≤ a

F̂ (·) is a step function where each step is at a value yi observed in the
sample
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APPLICATION: empirical CDF of wage

Compare empirical CDF with normal distribution
use htv.dta cdfplot wage
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APPLICATION: empirical CDF of log-wage

Compare empirical CDF with normal distribution
cdfplot lwage
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Some useful non-parametric methods

1 Cumulative distribution functions (CDF)

2 Density (PDF)

Centered histogram

Density estimation

3 Conditional means
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Centered histogram

Let yi have a continuous distribution with CDF F (·)

By definition the PDF = derivative of the CDF

f (y) ≡ dF (y)

dy
= lim

h→0

F (y + h)− F (y − h)

2h

(Centered) histogram: choose a small bandwidth h and plug in the
sample CDF in place of F

f̂ (y) = N−1
N∑
i=1

1
2h

(1[yi ≤ y + h]− 1[yi ≤ y − h])

= N−1
N∑
i=1

1
2h

(1[
yi − y

h
≤ 1]− 1[yi − y

h
≤ −1])
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APPLICATION: wage distribution

hist wage

0

.05

.1

.15

.2

Fr
ac

tio
n

0 20 40 60 80 100
hourly wage, 1991

34



APPLICATION: log wage distribution

hist lwage
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Density estimation

Rewrite the centered histogram estimator of f (x) as

f̂ (y) = N−1
N∑
i=1

1
h
k

(
yi − y

h

)

k(·) is a kernel function ⇒ weights observations

Choose alternative kernel to increase smoothness

For uniform density on the interval [−1, 1]

k(u) ≡ 1
2
1[−1 < u ≤ 1]
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Choice of kernel: many options available

k(·) is typically a symmetric density about zero
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Choice of bandwidth

1 Guess and experiment

2 Rules based on experience or optimality for common distributions

3 Use data-driven methods, such as cross validation

Evaluate quality of the bandwidth by looking at how well the resulting
estimator forecasts in the given sample
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APPLICATION: wage distribution

Histogram Density

hist wage
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APPLICATION: wage distribution

Histogram Density

kdensity wage, kernel(epan) normal
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APPLICATION: log-wage distribution

Histogram Density

hist lwage
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APPLICATION: log-wage distribution

Histogram Density

kdensity lwage, kernel(epan) normal
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Some useful non-parametric methods

1 Cumulative distribution functions (CDF)

2 Density (PDF)

3 Conditional means

Local smoothing or kernel regression

41



Local smoothing (kernel regression)

We want to estimate m(x) = E (yi |xi = x) from a random sample (xi , yi )

Kernel estimators are weighted averages of the yi

m̂(x) =

∑N
i=1 k(

xi−x
h )yi∑N

i=1 k(
xi−x
h )

≡
N∑
i=1

wN,i (x)yi

wN,i (x) are weights that give greater weight to xi closer to x

Non-negative and sum to unity

You can choose k(·) so that observations far enough away receive
zero-weight

Epanechnikov, rectangular or triangular
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APPLICATION: wage and ability

Choice of bandwidth 0.05 0.20 0.50 2.00

npregress kernel lwage abil, bwidth(0.05 0.05, copy)
kernel(epanechnikov)
npgraph
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APPLICATION: wage and ability

Choice of bandwidth 0.05 0.20 0.50 2.00

npregress kernel lwage abil, bwidth(2.00 2.00, copy)
kernel(epanechnikov)
npgraph
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Local smoothing with non-linear relationships

Observed data Kernel w/ bandwidth 0.5 5 50
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