Microeconometrics

The general microeconometrics approach

Alex Armand alex.armand@novasbe.pt

Course structure and evaluation

Microeconometrics aims at

- **1** giving empirical content to economic relations
- 2 using micro-level data
- with a particular focus on causal inference

Course structure and evaluation

Grading of the course is divided in three components:

- **9** Problem Sets (three): 15%
 - Tests what learned in class with practical examples
- **2** Group assignment: 30%
 - Paper replication project
- Final exam: 55%
 - Covers all the material covered in the course
 - Minumum passing grade of 8/20.
 - In accordance with the school norms, there is no procedure for grade improvement after passing a course (no re-sit or second course enrolment)

Material

The course is based on the slides, but we will follow partial material of the following textbook:

- Wooldridge, J., Econometric Analysis of Cross-Section and Panel Data. MIT Press, Cambridge, MA.
- Additional material can be found here:
 - Angrist, J.D., and J.S. Pischke, **Mostly harmless econometrics: An** empiricist's companion. Princeton University Press.
 - [MORE ADVANCED PhD level] Cameron, A. C., and P. K. Trivedi, Microeconometrics: Methods and Applications. Cambridge University Press, New York, NY.

No requirement of a specific software

The course will present a practical part using:

• STATA

You are free to use other software programs to practice or for the problem sets:

- R
- Matlab
- Etc...

Topics covered

- General microeconometrics approach
- 2 Identification in linear models: from cross-section to panel data
- In Non-linear models and the maximum likelihood
- 4 Latent variable models
- Censored data
- Sample selection
- GMM
- Statistical learning tools for causal analysis

Summary of today's class

- Main concepts in microeconometrics
- General microeconometrics approach
- The identication problem
 - Parametric versus non-parametric solutions
- Introduction to non-parametric methods

A problem: returns to education

Causation versus correlation

Interested in the causal effect between two random variables

- Variable of interest: D
- Outcome variable: Y

Directed Acyclic Graphs (or DAGs): powerful instrument to understand causation versus correlation

$$D \longrightarrow Y$$

• Direction of the arrow represents the **causal effect**

• Can we recover this relationship?

Some definitions: confounder

- Two paths from D to Y
 - **1** Causal effect: direct path $D \rightarrow Y$
 - **2** Backdoor path: $D \leftarrow X \rightarrow Y$
 - Spurious correlation between D and Y driven by X
 - X is a confounder

Some definitions: observability

- Two paths from D to Y
 - **1** Causal effect: direct path $D \rightarrow Y$
 - **2** Backdoor path: $D \leftarrow U \rightarrow Y$
 - U <u>unobserved</u> to the researcher (dashed lines)
 - U is a unobserved confounder (or non-collider) ⇒ backdoor path is open

Some definitions: collider

- Two paths from D to Y
 - **1** Direct path: $D \rightarrow Y$
 - **2** Backdoor path: $D \rightarrow X \leftarrow Y$
 - Two variables cause a third variable along some path
 - X is a collider \Rightarrow backdoor path is closed

- Open backdoor paths \Rightarrow
 - Systematic non-causal correlations between the variables of interest
- How to solve this problem?
- **Backdoor criterion**: when all backdoor paths are closed, the focus is on causal relationships
 - Backdoor path is open: control for the variable ⇒ importance of observability
 - Backdoor path is closed: ignore the variable ⇒ controlling would open the path (bad control)

- Open backdoor paths \Rightarrow
 - Systematic non-causal correlations between the variables of interest
- How to solve this problem?
- Backdoor criterion: when all backdoor paths are closed, the focus is on causal relationships
 - Backdoor path is open: control for the variable ⇒ importance of observability
 - ② Backdoor path is closed: ignore the variable ⇒ controlling would open the path (bad control)

- Open backdoor paths \Rightarrow
 - Systematic non-causal correlations between the variables of interest
- How to solve this problem?
- Backdoor criterion: when all backdoor paths are closed, the focus is on causal relationships
 - Backdoor path is open: control for the variable ⇒ importance of observability
 - Backdoor path is closed: ignore the variable ⇒ controlling would open the path (bad control)

- Open backdoor paths \Rightarrow
 - Systematic non-causal correlations between the variables of interest
- How to solve this problem?
- Backdoor criterion: when all backdoor paths are closed, the focus is on causal relationships
 - Backdoor path is open: control for the variable ⇒ importance of observability
 - **Backdoor path is closed**: ignore the variable ⇒ controlling would open the path (*bad control*)

What is the causal effect of education (D) on earnings (Y)?

- PE: parental education
- I: family income
- B: background factors (e.g., family environment, mental ability, ...)

- Four paths between D and Y:
 - **1** Causal effect: $D \rightarrow Y$
 - **2** Backdoor path 1: $D \leftarrow I \rightarrow Y$
 - **3** Backdoor path 2: $D \leftarrow PE \rightarrow I \rightarrow Y$
 - **3** Backdoor path 3: $D \leftarrow B \rightarrow PE \rightarrow I \rightarrow Y$

• How can we isolate the causal effect?

- Identify the open backdoor to close \Rightarrow all through *I*
- In a linear model, run the following regression controlling for the open backdoor

$$Y_i = \alpha + \beta D_i + \gamma I_i + \epsilon_i$$

• β can be interpreted as **causal**

• What if you run the same regression?

$$Y_i = \alpha + \beta D_i + \gamma I_i + \epsilon_i$$

- One backdoor remains open (causing D to be correlated with ϵ)
- β can be interpreted as (spurious) correlation \Rightarrow it captures the causal effect + the backdoor effect through *B*

Studying causal relationships: population and random sampling

The notion of a **population** is very important

- Large set of objects of a similar nature e.g. human beings, households, readings from a measurement device
- 2 Of interest as a whole

Target Population

Studying causal relationships: population and random sampling

- Our data are obtained as a random sample from a specified population of interest
 - A subset of objects is drawn from a population
 - Each draw is independent and identically distributed (i.i.d.)
- Later on we will focus on violations of random sampling
 - Censoring
 - Missing data
 - Sample selection problems

Studying causal relationships: type of data

- We will begin by assuming cross-sectional data
- We will extend the material to panel (or longitudinal) data or mixed cases (repeated cross sections)

What do we care about outcomes?

- Density function f(y) (**pdf**) and cumulative distribution function F(Y) (**cdf**)
- Conditional density function f(y|x)
- Moments of these distributions (unconditional and conditional means and variance)

What do we care about outcomes?

- Density function f(y) (**pdf**) and cumulative distribution function F(Y) (**cdf**)
- Conditional density function $f(y|\mathbf{x})$
- Moments of these distributions (unconditional and conditional means and variance)

What do we care about outcomes?

- Density function f(y) (pdf) and cumulative distribution function F(Y) (cdf)
- Conditional density function f(y|x)
- Moments of these distributions (unconditional and conditional means and variance)

General microeconometrics approach

Start with a model for a conditional density in the population of interest

 $f(y|\mathbf{x};\beta)$

- x: vector of (observable) control variables
- β : vector of parameters to be estimated

lacest Discuss whether eta can be identified and what assumptions are needed

Assume we have access to a random sample of size N

$$\{(x_i, y_i) : i = 1, ..., N\}$$

3 Use a random sample to estimate the population parameter

General microeconometrics approach

Start with a model for a conditional density in the population of interest

 $f(y|\mathbf{x};\beta)$

- x: vector of (observable) control variables
- β : vector of parameters to be estimated

 $\textbf{O} \ \ \text{Discuss whether} \ \beta \ \text{can be identified and what assumptions are needed}$

② Assume we have access to a random sample of size N

$$\{(x_i, y_i) : i = 1, ..., N\}$$

3 Use a random sample to estimate the population parameter

General microeconometrics approach

Start with a model for a conditional density in the population of interest

 $f(y|\mathbf{x};\beta)$

- x: vector of (observable) control variables
- β : vector of parameters to be estimated
- $\textbf{0} \ \text{Discuss whether } \beta \text{ can be identified and what assumptions are needed }$
- 2 Assume we have access to a random sample of size N

$$\{(x_i, y_i) : i = 1, ..., N\}$$

③ Use a random sample to estimate the population parameter

When this approach is feasible?

A statistical model is **identifiable** if...

...it is theoretically possible to learn the true values underlying parameters with an infinite number of observations from it.

- Types of identification
 - **9 Point identification**: underlying parameters are unique values
 - **2** Set identification: underlying parameters are sets of values
 - Ont identified: more than one set of parameters generate the same distribution of observations (observationally equivalent)

Identification: some examples

With random sampling, identification is purely a population problem

- If the model is well specified \Rightarrow it will have similar characteristics to the population when the sample gets larger
- Imagine the following population models:

$$y = x\beta$$

$$y = x\beta + u$$

$$y = \frac{x\beta}{\lambda} + u$$

• Can we identify the parameters β and λ in these cases? What assumptions we need for x and u?

Identification: some examples

With random sampling, identification is purely a population problem

- If the model is well specified \Rightarrow it will have similar characteristics to the population when the sample gets larger
- Imagine the following population models:

$$y = x\beta$$

$$y = x\beta +$$

$$3 \quad y = \frac{xp}{\lambda} + u$$

и

• Can we identify the parameters β and λ in these cases? What assumptions we need for x and u?

Identification: some examples

With random sampling, identification is purely a population problem

- If the model is well specified \Rightarrow it will have similar characteristics to the population when the sample gets larger
- Imagine the following population models:

$$y = x\beta$$

$$y = x\beta + u$$

$$y = \frac{x\beta}{2} + u$$

• Can we identify the parameters β and λ in these cases? What assumptions we need for x and u?

Identification: intuition

Identification Precision (inference)

Identification: intuition

Identification Precision (inference)

The identification problem in the general microeconometrics approach

- Studying $f(y|x;\beta)$ includes two types of unknowns:
 - What is the function f()?
 - **2** What are the parameters β ?
- Identification problem: in general we cannot identify both
 - Parametric micro-econometrics
 - Estimate β at the cost of making some assumptions and recovering only some features of f()
 - 2 Non-parametric micro-econometrics
 - Recover some features of f() (i.e., an *infinite dimensional feature*)
 - Generally used to look at distributions of a single variable or a relationship between two variables

The identification problem in the general microeconometrics approach

- Studying $f(y|x;\beta)$ includes two types of unknowns:
 - **1** What is the function f()?
 - **2** What are the parameters β ?
- Identification problem: in general we cannot identify both
 - Parametric micro-econometrics
 - Estimate β at the cost of making some assumptions and recovering only some features of f()
 - 2 Non-parametric micro-econometrics
 - Recover some features of f() (i.e., an *infinite dimensional feature*)
 - Generally used to look at distributions of a single variable or a relationship between two variables

Example: conditional mean of y

We want to estimate E[y|x] using exogenous covariates x

1 Parametric: $E[y|\mathbf{x}] = \alpha + \mathbf{x}\beta$

2 Non-parametric: E[y|x] = H(x)

3 Semi-parametric: $E[y|x] = G(\alpha + x\beta)$

Example: conditional mean of y

We want to estimate E[y|x] using exogenous covariates x

9 Parametric:
$$E[y|x] = \alpha + x\beta$$

- **2** Non-parametric: E[y|x] = H(x)
- **3** Semi-parametric: $E[y|x] = G(\alpha + x\beta)$

Example: conditional mean of y

We want to estimate E[y|x] using exogenous covariates x

1 Parametric:
$$E[y|x] = \alpha + x\beta$$

2 Non-parametric:
$$E[y|x] = H(x)$$

3 Semi-parametric:
$$E[y|x] = G(\alpha + x\beta)$$

Non-parametric methods

Cumulative distribution functions (CDF)

- Oensity (PDF)
- Conditional means

Empirical CDF

Let y denote a random variable with cdf $F(a) = P(y \le a)$

$$P(y \le a) = E\{\mathbb{1}[y \le a]\}$$

• Empirical CDF is the empirical counterpart

$$\hat{F}(a) = N^{-1} \sum_{i=1}^{N} \mathbb{1}[y_i \leq a]$$

- Simply the fraction of observations that are $\leq a$
- $\hat{F}(\cdot)$ is a step function where each step is at a value y_i observed in the sample

APPLICATION: empirical CDF of wage

• Compare empirical CDF with normal distribution use htv.dta cdfplot wage

APPLICATION: empirical CDF of log-wage

 \bullet Compare empirical CDF with normal distribution cdfplot lwage

Some useful non-parametric methods

- Cumulative distribution functions (CDF)
- One Density (PDF)
 - Centered histogram
 - Density estimation
- Onditional means

Centered histogram

Let y_i have a continuous distribution with CDF $F(\cdot)$

• By definition the $\mathsf{PDF} = \mathsf{derivative}$ of the CDF

$$f(y) \equiv \frac{dF(y)}{dy} = \lim_{h \to 0} \frac{F(y+h) - F(y-h)}{2h}$$

• (Centered) histogram: choose a small bandwidth *h* and plug in the sample CDF in place of *F*

$$\hat{f}(y) = N^{-1} \sum_{i=1}^{N} \frac{1}{2h} (\mathbb{1}[y_i \le y+h] - \mathbb{1}[y_i \le y-h])$$

$$= N^{-1} \sum_{i=1}^{N} \frac{1}{2h} (\mathbb{1}[\frac{y_i - y}{h} \le 1] - \mathbb{1}[\frac{y_i - y}{h} \le -1])$$

APPLICATION: wage distribution

hist wage

APPLICATION: log wage distribution

hist lwage

Density estimation

• Rewrite the centered histogram estimator of f(x) as

$$\hat{f}(y) = N^{-1} \sum_{i=1}^{N} \frac{1}{h} k\left(\frac{y_i - y}{h}\right)$$

- $k(\cdot)$ is a kernel function \Rightarrow weights observations
 - Choose alternative kernel to increase smoothness
 - For uniform density on the interval $\left[-1,1
 ight]$

$$k(u) \equiv \frac{1}{2}\mathbb{1}[-1 < u \le 1]$$

Choice of kernel: many options available

• $k(\cdot)$ is typically a symmetric density about zero

Choice of bandwidth

- **1** Guess and experiment
- **2** Rules based on experience or optimality for common distributions
- **③** Use data-driven methods, such as cross validation
 - Evaluate quality of the bandwidth by looking at how well the resulting estimator forecasts in the given sample

APPLICATION: wage distribution

Histogram Density

hist wage

APPLICATION: wage distribution

Histogram Density

kdensity wage, kernel(epan) normal

kernel = epanechnikov, bandwidth = 1.3006

APPLICATION: log-wage distribution

Histogram Density

hist lwage

APPLICATION: log-wage distribution

Histogram Density

kdensity lwage, kernel(epan) normal

kernel = epanechnikov, bandwidth = 0.1130

Some useful non-parametric methods

- Cumulative distribution functions (CDF)
- Oensity (PDF)
- Onditional means
 - Local smoothing or kernel regression

Local smoothing (kernel regression)

We want to estimate $m(x) = E(y_i | x_i = x)$ from a random sample (x_i, y_i)

• Kernel estimators are weighted averages of the y_i

$$\hat{m}(x) = \frac{\sum_{i=1}^{N} k(\frac{x_i - x}{h}) y_i}{\sum_{i=1}^{N} k(\frac{x_i - x}{h})} \equiv \sum_{i=1}^{N} w_{N,i}(x) y_i$$

• $w_{N,i}(x)$ are weights that give greater weight to x_i closer to x

- Non-negative and sum to unity
- You can choose $k(\cdot)$ so that observations far enough away receive zero-weight
 - Epanechnikov, rectangular or triangular

• Choice of bandwidth 0.05 0.20 0.50 2.00 npregress kernel lwage abil, bwidth(0.05 0.05, copy) kernel(epanechnikov) npgraph

Local-linear Kernel : epa Bandwidth: cro	regression anechnikov oss validation	Number of obs E(Kernel obs) R-squared	= = =	1,225 61 0.2005
lwage	Estimate			
Mean lwage	2.415723			
Effect abil	 .0967772			
Note: Effect (estimates are average	es of derivatives.		

• Choice of bandwidth 0.05 0.20 0.50 2.00

kernel = epanechnikov bandwidth = .05

• Choice of bandwidth 0.05 0.20 0.50 2.00 npregress kernel lwage abil, bwidth(0.20 0.20, copy) kernel(epanechnikov) npgraph

Local-linear regression Kernel : epanechnikov Bandwidth: cross valida	Numb CE(Ke Ation R-sc	per of obs = ernel obs) = quared =	1,230 246 0.1535
lwage Estima	ate		
Mean lwage 2.41	346		
Effect abil .11276	579		
Note: Effect estimates	are averages of derivati	ives.	

• Choice of bandwidth 0.05 0.20 0.50 2.00

kernel = epanechnikov bandwidth = .2

• Choice of bandwidth 0.05 0.20 0.50 2.00 npregress kernel lwage abil, bwidth(0.50 0.50, copy) kernel(epanechnikov) npgraph

Local-linear regression Kernel : epanechnikov Bandwidth: cross validation	Number of obs E(Kernel obs) R-squared	= = =	1,230 615 0.1439
lwage Estimate			
Mean lwage 2.413593			
Effect abil .1036292			
Note: Effect estimates are averages o	of derivatives.		

• Choice of bandwidth 0.05 0.20 0.50 2.00

kernel = epanechnikov bandwidth = .5

• Choice of bandwidth 0.05 0.20 0.50 2.00 npregress kernel lwage abil, bwidth(2.00 2.00, copy) kernel(epanechnikov) npgraph

Local-linear reg Kernel : epaneo Bandwidth: cross	ression chnikov validation	Number of obs E(Kernel obs) R-squared	= = =	1,230 1,230 0.1360
lwage	Estimate			
Mean lwage	2.410087			
Effect abil	.0962977			

• Choice of bandwidth 0.05 0.20 0.50 2.00

kernel = epanechnikov bandwidth = 2

• Observed data Kernel w/ bandwidth 0.5 5 50

• Observed data Kernel w/ bandwidth 0.5 5 50

Gaussian Kernel Regression, sigma =0.5

• Observed data Kernel w/ bandwidth 0.5 5 50

Gaussian Kernel Regression, sigma =5

44

• Observed data Kernel w/ bandwidth 0.5 5 50

Gaussian Kernel Regression, sigma = 50

