static games with complete information

introduction:

- examples
- definition of a game

equilibrium in dominant strategies

- dominant and dominated strategies:
- weak and strong definitions
- equilibrium in strictly dominant strategies

Nash equilibrium

- definition of best response definition of Nash equilibrium interpretations
- mixed strategies

example: prisoner's dilemma

2	Not to confess	Confess
Not to confess	-1,-1	-6,0
Confess	0,-6	-3,-3

example: coordination game

2	Book launch	Movie
Book launch	2,1	0,0
Movie	0,0	1,2

example: matching pennies

2	Heads	Tails
Heads	-1,+1	+1,-1
Tails	+1,-1	-1,+1

definition of a game

Game:

- Set of players {1,2,3,...,N}
 - Set of (pure) strategies for each player S_i (i=1,...,N)
- Payoff function for each player: $\Pi_i(s_i,s_{-i})$ (i=1,...,N)

dominant and dominated strategies (strong definition)

Def: s_i is a strictly dominant strategy for player i or strongly dominates all other strategies for player i if, for all s_i ' ϵS_i such that s_i ' $\neq s_i$, and for all $s_{-i}\epsilon S_{-i}$, $\Pi_i(s_i,s_{-i}) > \Pi_i(s_i',s_{-i})$.

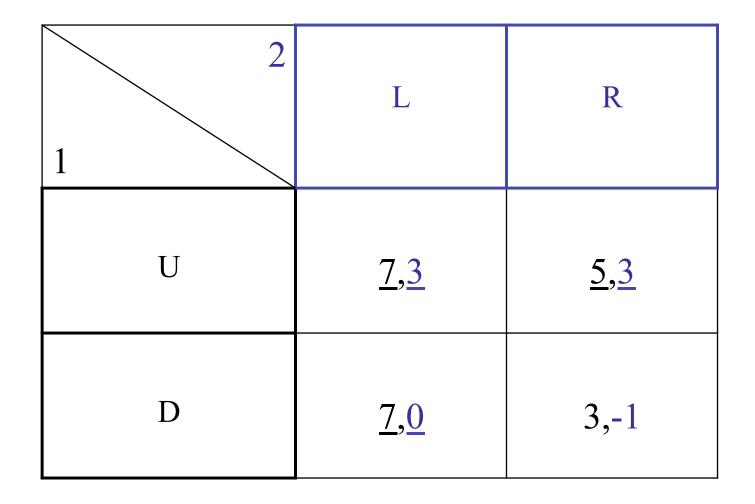
(and s_i' is a strictly dominated strategy for player i)

dominant and dominated strategies (weak definition)

Def: s_i is a weakly dominant strategy for player i or weakly dominates all other strategies for player i if, for all $s_i \in S_i$ such that $s_i \neq s_i$, for all $s_{-i} \in S_{-i}$, $\Pi_i(s_i, s_{-i}) \ge \Pi_i(s_i, s_{-i})$ and for some $s_{-i} \in S_{-i}$, $\Pi_i(s_i, s_{-i}) > \Pi_i(s_i, s_{-i})$

(and s_i' is a weakly dominated strategy for player i)

example: weakly dominant strategy



equilibrium in dominant strategies dominant strategy solution

- Def: A game has a dominant strategy solution if every player has a dominant strategy.
- Def: $(s_1,...,s_N)$ is an equilibrium in dominant strategies if for all i=1,...,N, s_i is a dominant strategy.

Nash equilibrium (definition)

- Def: Strategy s_i^* is a best response to $s_{-i}^* \in S_{-i}$ if $\Pi_i(s_i^*, s_{-i}^*) \ge \Pi_i(s_i, s_{-i}^*)$ for all s_i
- Def: A vector of strategies $s^{*}=(s_1^{*},s_2^{*},...,s_N^{*})$ is a Nash equilibrium if $\Pi_i(s_i^{*},s_{-i}^{*}) \ge \Pi_i(s_i,s_{-i}^{*})$ for all s_i and for all i

Nash equilibrium (interpretations)

- play prescription
- preplay communication
- rational introspection
- focal point
- trial and error

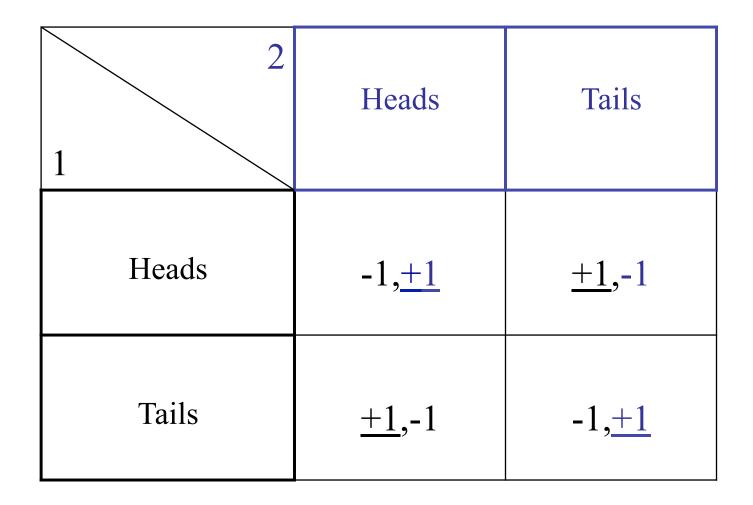
example: prisoner's dilemma

2	Not to confess	Confess
Not to confess	-1,-1	-6, <u>0</u>
Confess	<u>0</u> ,-6	-3,-3

example: coordination game problem: uniqueness

2	Book launch	Movie
Book launch	<u>2,1</u>	0,0
Movie	0,0	<u>1,2</u>

example: matching pennies problem: existence



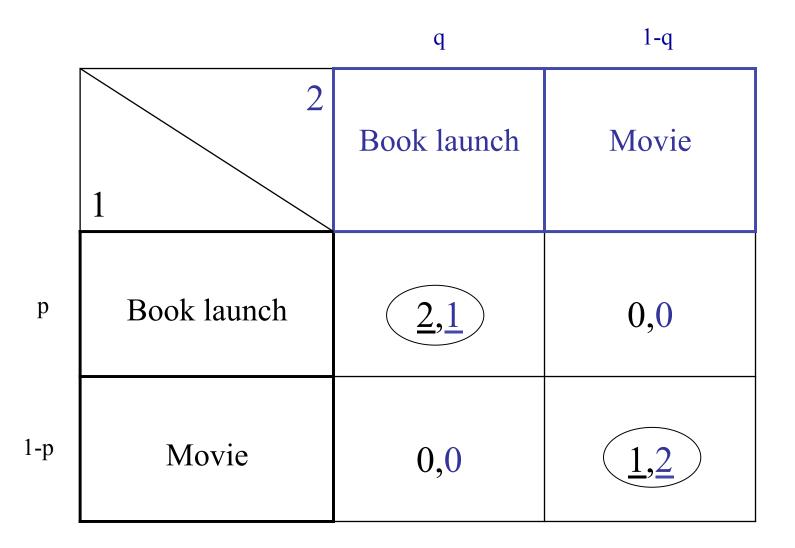
mixed strategies definition

Def: Suppose a player has M pure strategies $s^1, s^2, ..., s^M$. A mixed strategy for this player is a probability distribution over her pure strategies $(p^1, p^2, ..., p^M)$ where $p^k \ge 0$ for all k, and $\Sigma_k p^k=1$.

Note: A pure strategy is also a mixed strategy.

Def: The support of a mixed strategy is the set of pure strategies to which the mixed strategy attributes a positive probability.

mixed strategies example: coordination game



mixed strategies expected payoff

Example:

player 1's expected payoff in the coordination game is p[2.q+0.(1-q)]+(1-p)[0.q+1.(1-q)]

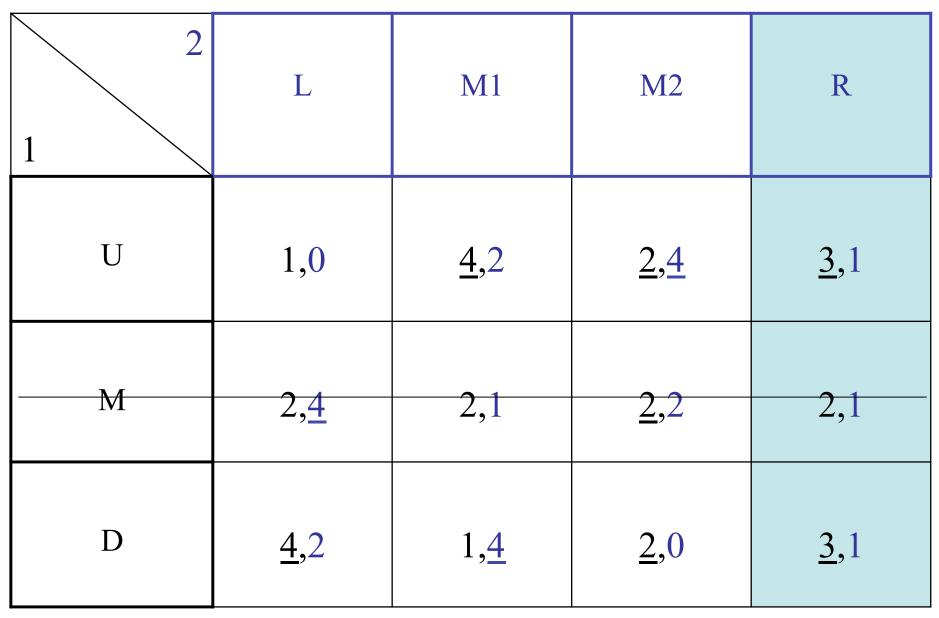
General case:

- each player has M pure strategies $s_i^1, s_i^2, ..., s_i^M$ and plays a mixed strategy $(p_i^1, p_i^2, ..., p_i^M)$ where $p_i^k \ge 0$ for all k, and $\Sigma_k p_i^k=1$.

- player i's expected payoff is $\Sigma_j \Sigma_k p_i^{j} p_{-i}^{k} \Pi_i(s_i^{j}, s_{-i}^{k})$

mixed strategies

example: best response



mixed strategies best response

The expected payoff to a mixed strategy is simply an average of the payoffs of the pure strategies in the support of this mixed strategy.

- A mixed strategy $(p^1, p^2, ..., p^M)$ is a best response to s_{-i} if and only if each of the pure strategies in its support is itself a best response to s_{-i} .
- In that case, any mixed strategy over that support will be a best response.

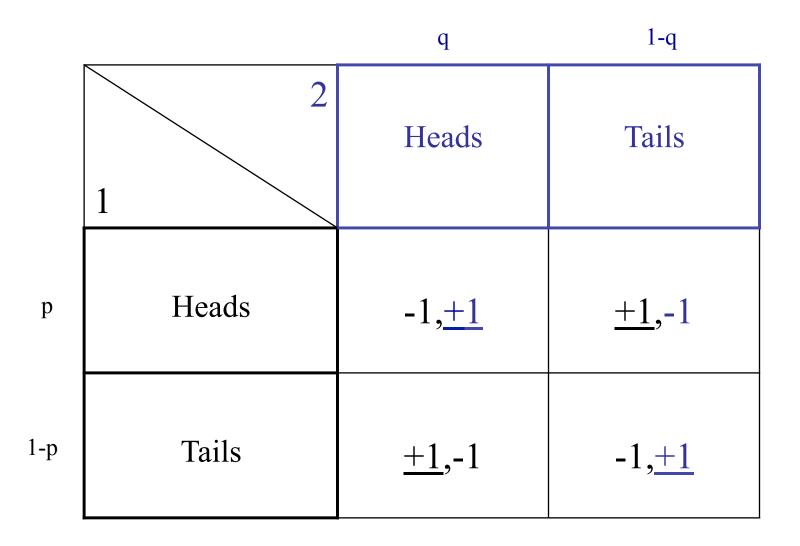
mixed strategies and domination

- Mixed strategies may dominate some pure strategies.
- Adding mixed strategies has no impact on dominant strategy equilibria:

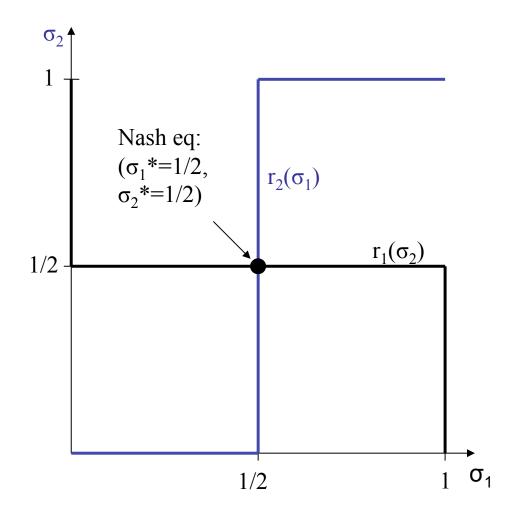
if there is a pure strategy that dominates every other pure strategy, it will also dominate every other mixed strategy;

if there is no dominant strategy in pure strategies, there cannot be one in mixed strategies either.

mixed strategies example: Nash equilibrium



mixed strategies example: Nash equilibrium



mixed strategies and Nash equilibrium

- In every game there is always a Nash equilibrium in mixed strategies.
- Examples: matching pennies, coordination game
- Are mixed strategies reasonable?